[image: image1.wmf]B

B

B

B

B

E

E

E

E

E

G

G

G

G

G

I

I

I

I

I

N

N

N

N

N

C

C

C

C

C

O

O

O

O

O

N

N

N

N

N

N

N

N

N

N

E

E

E

E

E

C

C

C

C

C

T

T

T

T

T

S

S

S

S

S

E

E

E

E

E

A

A

A

A

A

R

R

R

R

R

C

C

C

C

C

H

H

H

H

H

L

L

L

L

L

I

I

I

I

I

S

S

S

S

S

T

T

T

T

T

E

E

E

E

E

N

N

N

N

N

T

T

T

T

T

E

E

E

E

E

R

R

R

R

R

M

M

M

M

M

I

I

I

I

I

N

N

N

N

N

A

A

A

A

A

T

T

T

T

T

E

E

E

E

E

C

C

C

C

C

L

L

L

L

L

O

O

O

O

O

S

S

S

S

S

E

E

E

E

E

Q

U

I

T

A

B

O

R

T

C

C

C

C

C

O

O

O

O

O

N

N

N

N

N

N

N

N

N

N

E

E

E

E

E

C

C

C

C

C

T

T

T

T

T

_

_

_

_

_

I

I

I

I

I

N

N

N

N

N

_

_

_

_

_

P

P

P

P

P

R

R

R

R

R

O

O

O

O

O

G

G

G

G

G

R

R

R

R

R

E

E

E

E

E

S

S

S

S

S

S

S

S

S

S

AR

CH

IV

E

_D

OW

N

CLIENTSYS_ERROR

C

C

C

C

C

O

O

O

O

O

N

N

N

N

N

N

N

N

N

N

E

E

E

E

E

C

C

C

C

C

T

T

T

T

T

_

_

_

_

_

O

O

O

O

O

P

P

P

P

P

E

E

E

E

E

N

N

N

N

N

T

T

T

T

T

R

R

R

R

R

A

A

A

A

A

N

N

N

N

N

S

S

S

S

S

M

M

M

M

M

I

I

I

I

I

T

T

T

T

T

T

T

T

T

T

E

E

E

E

E

D

D

D

D

D

G

O

T

_

N

O

D

A

T

A

GOT

_I

NV

RE

SU

LT

GO

T

_

F

T

P

B

R

OW

S

E

GO

T

_

M

DD

I

F

S

GO

T

_

IN

T

B

RO

W

S

E

G

O

T

_

A

C

K

AR

CH

IV

E

_D

OW

N

CLIENTSYS_ERROR

CONNECT_FAILED

AR

CH

IV

E

_D

OW

N

CLIENTSYS_ERROR

T

R

A

N

S

M

I

T

T

E

D

CLIENTSYS_ERROR

ABO

RT

_S

EA

RC

H

AR

CH

IV

E

_D

OW

N

CLIENTSYS_ERROR

T

R

A

N

S

M

I

T

T

E

D

Stat

e Diagra

m for O

rder

I

I

I

I

I

N

N

N

N

N

G

G

G

G

G

E

E

E

E

E

S

S

S

S

S

T

T

T

T

T

CLIENTSYS_ERROR

C

C

C

C

C

O

O

O

O

O

N

N

N

N

N

N

N

N

N

N

E

E

E

E

E

C

C

C

C

C

T

T

T

T

T

_

_

_

_

_

C

C

C

C

C

L

L

L

L

L

O

O

O

O

O

S

S

S

S

S

E

E

E

E

E

D

D

D

D

D

G

G

G

G

G

O

O

O

O

O

T

T

T

T

T

_

_

_

_

_

P

P

P

P

P

R

R

R

R

R

O

O

O

O

O

D

D

D

D

D

R

R

R

R

R

E

E

E

E

E

S

S

S

S

S

U

U

U

U

U

L

L

L

L

L

T

T

T

T

T

GO

T

_

Q

U

I

T

I

I

I

I

I

N

N

N

N

N

G

G

G

G

G

E

E

E

E

E

S

S

S

S

S

T

T

T

T

T

P

P

P

P

P

R

R

R

R

R

_

_

_

_

_

S

S

S

S

S

U

U

U

U

U

C

C

C

C

C

C

C

C

C

C

E

E

E

E

E

S

S

S

S

S

S

S

S

S

S

A

N

Y

S

T

A

T

E

ABO

RT

_S

EA

RC

H

TE

R

M

I

N

A

T

E

D

S

t

a

t

e

s

a

n

d

e

v

e

n

t

s

i

n

o

u

t

l

i

n

e

f

o

r

m

a

t

i

n

d

i

c

a

t

e

t

h

e

n

o

m

i

n

a

l

f

l

o

w

o

f

c

o

n

t

r

o

l

f

o

r

a

n

e

r

r

o

r

-

f

r

e

e

t

r

a

n

s

a

c

t

i

o

n

.

[image: image2.wmf]B

B

B

B

B

E

E

E

E

E

G

G

G

G

G

I

I

I

I

I

N

N

N

N

N

C

C

C

C

C

O

O

O

O

O

N

N

N

N

N

N

N

N

N

N

E

E

E

E

E

C

C

C

C

C

T

T

T

T

T

S

S

S

S

S

E

E

E

E

E

A

A

A

A

A

R

R

R

R

R

C

C

C

C

C

H

H

H

H

H

L

L

L

L

L

I

I

I

I

I

S

S

S

S

S

T

T

T

T

T

E

E

E

E

E

N

N

N

N

N

T

T

T

T

T

E

E

E

E

E

R

R

R

R

R

M

M

M

M

M

I

I

I

I

I

N

N

N

N

N

A

A

A

A

A

T

T

T

T

T

E

E

E

E

E

C

C

C

C

C

L

L

L

L

L

O

O

O

O

O

S

S

S

S

S

E

E

E

E

E

QUIT

AB

OR

T

C

C

C

C

C

O

O

O

O

O

N

N

N

N

N

N

N

N

N

N

E

E

E

E

E

C

C

C

C

C

T

T

T

T

T

_

_

_

_

_

I

I

I

I

I

N

N

N

N

N

_

_

_

_

_

P

P

P

P

P

R

R

R

R

R

O

O

O

O

O

G

G

G

G

G

R

R

R

R

R

E

E

E

E

E

S

S

S

S

S

S

S

S

S

S

ARCHIVE_DOWN

CLIE

NTSY

S_ER

ROR

C

C

C

C

C

O

O

O

O

O

N

N

N

N

N

N

N

N

N

N

E

E

E

E

E

C

C

C

C

C

T

T

T

T

T

_

_

_

_

_

O

O

O

O

O

P

P

P

P

P

E

E

E

E

E

N

N

N

N

N

T

T

T

T

T

R

R

R

R

R

A

A

A

A

A

N

N

N

N

N

S

S

S

S

S

M

M

M

M

M

I

I

I

I

I

T

T

T

T

T

T

T

T

T

T

E

E

E

E

E

D

D

D

D

D

GOT

_N

OD

AT

A

GOT

_IN

VR

ESU

LT

GOT_

PROD

RESU

LT

GOT

_FT

PB

ROW

SE

GOT

_M

DD

IF

S

GOT

_I

NT

BRO

WS

E

GOT

_AC

K

ARCHIVE_DOWN

CLIE

NTSY

S_ER

ROR

CONNECT

_FAILED

ARCHIVE_DOWN

CLIE

NTSY

S_ER

ROR

TR

A

NS

M

IT

T

ED

CLIE

NTSY

S_ER

ROR

ABORT_SEAR

CH

ARCHIVE_DOWN

CLIE

NTSY

S_ER

ROR

TR

A

NS

M

IT

T

ED

State Diag

ram for S

erver Sta

tus

I

I

I

I

I

N

N

N

N

N

G

G

G

G

G

E

E

E

E

E

S

S

S

S

S

T

T

T

T

T

CLIE

NTSY

S_ER

ROR

C

C

C

C

C

O

O

O

O

O

N

N

N

N

N

N

N

N

N

N

E

E

E

E

E

C

C

C

C

C

T

T

T

T

T

_

_

_

_

_

C

C

C

C

C

L

L

L

L

L

O

O

O

O

O

S

S

S

S

S

E

E

E

E

E

D

D

D

D

D

GO

T

_

Q

UI

T

ANY

 S

TA

TE

ABORT_SEAR

CH

TE

RM

IN

AT

ED

States and

events in outline fo

rmat indicate the nom

inal flow of control

 for an error-free tr

ansaction.

Raytheon STX

Adding a New Transaction to the EOSDIS Version 0 IMS System

IK-Layer Client Modifications

Adding a New Transaction to the EOSDIS Version 0 IMS System

IK-Layer Client Modifications

Introduction

Purpose

This document will describe the steps required to add a new transaction type to the NASA EOSDIS Version 0 IMS system. Emphasis will be placed on the code changes required to implement a new transaction type.

Target audience

This document is intended primarily for developers who are maintaining or enhancing the V0 IMS client or server code. The reader is assumed to be familiar with the operation of the client and servers, as well as the V0 IMS client development environment.

Background

What is a V0 IMS transaction?

A V0 IMS transaction is the sequence of events that occurs from the time that a user initiates a request for a V0 IMS service, and the completion of the delivery of that service, or the abnormal termination of the processing of the request. The most important aspect of this sequence of events is the exchange of messages between the client and the server. Messages are exchanged using a text-based format called ODL (Object Description Language), a data description protocol initially developed for the NASA Planetary Data System (NASA PDS).

All transactions share some common characteristics. Each transaction requires the establishment of one or more TCP/IP connections to V0 IMS servers (or equivalent gateway systems). Each transaction involves the transmission of a request message to each server, and the receipt and processing of at least one response message. Each transaction must also allow for the possibility of exceptional conditions at the client or server end of the transaction, many of which lead to the abnormal termination of the transaction. Each transaction is represented as a finite state machine (FSM) within the V0 client code, with state transitions triggered by events, such as the transmission or receipt of a message, or a user action. Each transaction is also visualized in the client using a communication status screen, which graphically displays the progress of the transaction for each connected server. In most cases, the connections to each server within a single transaction proceed in parallel.

Existing transactions differ primarily in the detailed structure of their FSM and in the type of messages they receive from the servers. For example, an integrated browse transaction results in the transmission from the server to the client of an ODL image header, followed by the binary data for the image itself, while an FTP browse request results only in a small ODL message containing contact and pickup information. The detailed processing of each incoming message type is, by necessity, type-specific.

Current transaction types

Directory search. A directory search is used to locate dataset-level information stored in the Global Change Master Directory (GCMD), a separate information service provided by NASA on the Internet. The V0 IMS client transmits the search criteria to the servers, which respond to the request by returning the DIF ID (Directory Interchange Format IDentifier) for each dataset in their holdings which meets the query criteria. The client then closes the connection to the server, and opens a connection to the database server at the GCMD, from which it retrieves the required dataset information using a SQL query. The directory search transaction is the most complicated of all the currently supported transactions, since it requires the management of two sequential network connections to different servers, with differing communication protocols (ODL vs. SQL).

Inventory search. An inventory search is performed when the user wishes to obtain detailed information on individual "granules" - independent subsections of datasets. The V0 client transmits the search criteria to the server, and the server responds with a list of granules which meet the criteria, along with relevant metadata. The FSM for this transaction has the added complication that the inventory result messages can be broken into "chunks" for efficient transmission and processing. Result messages are read repeatedly from the server until a termination message is received. An acknowledgement message is transmitted to the server after the receipt of each "chunk".

FTP browse request. The FTP browse request is used to request a browse image for a granule to be placed on a server for subsequent pickup via FTP (File Transfer Protocol). The data center stages the image file to the server, and the user picks up the image via FTP at some later time, using any available FTP client. The V0 IMS client is only used to submit the request and process and display the acknowledgement and contact information. The user is also typically sent an electronic mail message containing specifics for the pickup, such as server name and login requirements. An FTP browse request is sent to a single server, for a single image, at a time. Multiple FTP browse requests do not proceed in parallel.

Integrated browse request. An integrated browse request differs from an FTP browse request in that the image is directly transmitted back to the client over the same TCP/IP connection used to transmit the ODL response message. The client then displays the image immediately. The same connection is thus used for two purposes - reading the text-based ODL message, and reading the image data, which comes across in HDF (Hierarchical Data Format). As for FTP browse requests, integrated browse requests are sent to a single server, for a single image at a time.

Order. An order request is used when a user wishes to order a particular package of data. Like the FTP browse request, the mechanics of the order transaction are simple - a single message is transmitted to each server, and a single message is received from each server. The received message typically contains information on the order, and contact information in case of a problem.

Guide search. A guide search is actually a keyword-based search on the World Wide Web. V0 IMS server sites run WAIS (Wide-Area Information System) servers which maintain indices of relevant documentation, and process keyword search requests submitted via the V0 IMS client. Guide searches are typically performed to obtain detailed background information on a dataset, sensor, or other data characteristic prior to performing another transaction. A guide search is not actually a transaction in the sense described in this document, since it is handled independently of the IK layer communication mechanism. Guide searches are handled using source code for the original NCSA (National Center for Supercomputing Applications) Mosaic Web browser, integrated into the V0 IMS client. Guide searches will not be discussed further in this document.

Before you touch the code...

Introduction

Once the decision to add a new transaction has been made, several questions must be answered prior to making any changes to the code:

1) What are the states for the new transaction?

2) What are the state transitions for the new transaction?

3) Can the new transaction be patterned after an existing transaction?

4) What new message types are required?

5) What changes will be required at the client side?

6) What changes will be required at the server side?

Once these questions have been addressed, the code modifications may be performed. Code modifications typically must be made in many files at multiple levels within the client source code. For instance, adding a new search type requires changes at the low level to implement the state machine for the search type, and changes at the user-interface level to provide visual feedback on the progress of the search.

What are the states for the new transaction?

The V0 IMS code requires each transaction to be represented internally as a finite state machine. In this context, a finite state machine is the collection of all possible states and state transitions which represent all possible paths (nominal and abnormal) through the transaction. Conceptually, a state machine is created for each connection within a transaction, and the multiple state machines proceed independently and in parallel (in most cases). For example, a directory search to three data centers results in the creation of three state machines, one for each data center.

Each transaction starts in the IK_BEGIN state
. In this state, all preparations are made to open the connection to the server and execute the transaction on the current connection. Assuming no errors occur, each transaction then proceeds to the IK_CONNECT state, in which the network connection to the server is established. Once the connection is established, the IK_SEARCH state is used to send a request message to the connected server in. The connection then enters the IK_LISTEN state, in which the connection is monitored for incoming response messages from the server. Beyond this point, the state machine details become transaction-specific, but will include processing of the received message and closing the connection. Each connection always ends in the IK_TERMINATE state.

In general, any new transaction type will follow the sequence described above, up through the IK_LISTEN state. Transmission of new message types to the server may not require new states. New message types sent at the start of a transaction can be prepared in the IK_BEGIN state and transmitted in the IK_SEARCH state. New messages sent to the server after the receipt of a server response may require a new state for the preparation and transmission of the message; the IK_INVSRCH_ACK state (transmission of an acknowledgement message from the client to the server after the receipt of an inventory result chunk) is an example of this sort of message. Any new message types received from the server should lead to the creation of a new ingest state for that message, but the initial receipt of the new message type can still be handled with the existing IK_LISTEN state. Other types of actions, such as connections to other servers (as in the directory search) should be handled by new states.

A variety of states are available for handling most termination and error processing conditions (nominal and abnormal). The IK_CLOSE state is always used to perform orderly closing of an open network connection. The IK_ABORT state is used to process user-generated abort events. The IK_QUIT state is typically used to handle situations in which incorrect message types are received from the server.

What are the state transitions for the new transaction?

Transitions occur between states in the state table when "events" occur. In this context, an "event" is an integer code representing each possible real-world event which can be processed by the state machine. Events occur when connections are opened or closed, messages are sent, received or processed, or the user takes some action. The list of possible events is global, and shared between all state machines.

The mapping between events and state transitions is implemented as an array. Each state machine can be visually represented as a state diagram (see Figure 1 for an example). This diagram can also be represented as a state transition table, with each row corresponding to the current state, and each column corresponding to a possible event code. The contents of a cell in the table is the code for the state to transition to from the current state when the specified event occurs.

· [image: image3.wmf]B

B

B

B

B

E

E

E

E

E

G

G

G

G

G

I

I

I

I

I

N

N

N

N

N

C

C

C

C

C

O

O

O

O

O

N

N

N

N

N

N

N

N

N

N

E

E

E

E

E

C

C

C

C

C

T

T

T

T

T

S

S

S

S

S

E

E

E

E

E

A

A

A

A

A

R

R

R

R

R

C

C

C

C

C

H

H

H

H

H

L

L

L

L

L

I

I

I

I

I

S

S

S

S

S

T

T

T

T

T

E

E

E

E

E

N

N

N

N

N

T

T

T

T

T

E

E

E

E

E

R

R

R

R

R

M

M

M

M

M

I

I

I

I

I

N

N

N

N

N

A

A

A

A

A

T

T

T

T

T

E

E

E

E

E

C

C

C

C

C

L

L

L

L

L

O

O

O

O

O

S

S

S

S

S

E

E

E

E

E

QUIT

AB

OR

T

C

C

C

C

C

O

O

O

O

O

N

N

N

N

N

N

N

N

N

N

E

E

E

E

E

C

C

C

C

C

T

T

T

T

T

_

_

_

_

_

I

I

I

I

I

N

N

N

N

N

_

_

_

_

_

P

P

P

P

P

R

R

R

R

R

O

O

O

O

O

G

G

G

G

G

R

R

R

R

R

E

E

E

E

E

S

S

S

S

S

S

S

S

S

S

ARCHIVE_DOWN

CLIE

NTSY

S_ER

ROR

C

C

C

C

C

O

O

O

O

O

N

N

N

N

N

N

N

N

N

N

E

E

E

E

E

C

C

C

C

C

T

T

T

T

T

_

_

_

_

_

O

O

O

O

O

P

P

P

P

P

E

E

E

E

E

N

N

N

N

N

T

T

T

T

T

R

R

R

R

R

A

A

A

A

A

N

N

N

N

N

S

S

S

S

S

M

M

M

M

M

I

I

I

I

I

T

T

T

T

T

T

T

T

T

T

E

E

E

E

E

D

D

D

D

D

GOT

_N

OD

AT

A

GOT

_IN

VR

ESU

LT

GOT_

PROD

RESU

LT

GOT

_FT

PB

ROW

SE

GOT

_M

DD

IF

S

GOT

_I

NT

BRO

WS

E

GOT

_AC

K

ARCHIVE_DOWN

CLIE

NTSY

S_ER

ROR

CONNECT

_FAILED

ARCHIVE_DOWN

CLIE

NTSY

S_ER

ROR

TR

A

NS

M

IT

T

ED

CLIE

NTSY

S_ER

ROR

ABORT_SEAR

CH

ARCHIVE_DOWN

CLIE

NTSY

S_ER

ROR

TR

A

NS

M

IT

T

ED

State Diag

ram for S

erver Sta

tus

I

I

I

I

I

N

N

N

N

N

G

G

G

G

G

E

E

E

E

E

S

S

S

S

S

T

T

T

T

T

CLIE

NTSY

S_ER

ROR

C

C

C

C

C

O

O

O

O

O

N

N

N

N

N

N

N

N

N

N

E

E

E

E

E

C

C

C

C

C

T

T

T

T

T

_

_

_

_

_

C

C

C

C

C

L

L

L

L

L

O

O

O

O

O

S

S

S

S

S

E

E

E

E

E

D

D

D

D

D

GO

T

_

Q

UI

T

ANY

 S

TA

TE

ABORT_SEAR

CH

TE

RM

IN

AT

ED

States and

events in outline fo

rmat indicate the nom

inal flow of control

 for an error-free tr

ansaction.

Figure 1: State diagram for the Order transaction.

Some states can only respond to a small number of event codes. For example, the IK_BEGIN state typically only responds to the IK_CONNECT_IN_PROGRESS event (which causes a transition to the IK_CONNECT state), or the IK_ARCHIVE_DOWN or IK_CLIENTSYS_ERROR event, both of which are error conditions which cause a transition to the IK_TERMINATE state. Each state, regardless of its location in the state machine, must also be able to transition to the IK_ABORT state if an IK_ABORT_SEARCH event is received. If the current connection receives an event code to which it is unable to respond (indicated in the state table by a transition to the non-existent IK_ABNORMAL state), a fatal error has occurred.

The current selection of event codes should be sufficient for most purposes when designing a new transaction, and should be used wherever possible. However, if the new transaction involves the receipt of a new message type, then a new event code must be created for the receipt of that message type. For example, when the client receives an order result message from a server, a IK_GOT_PRODRESULT event is generated. Successful transmission of new message types can be indicated using the existing IK_TRANSMITTED event. If the new message type requires a special ingest state, then an event code must be created to indicate the successful completion of that ingest. Continuing the order example, the IK_INGEST state generates a IK_INGESTPR_SUCCESS event. New events will also be required to indicate the successful completion of any new types of states.

A pair of event codes are available to indicate abnormal conditions. The IK_ARCHIVE_DOWN event is used when a connection to the server cannot be established, or is subsequently lost. The IK_CLIENTSYS_ERROR event should be used in most cases where a client-side run-time error has been detected. The IK_ABORT_SEARCH event should be handled by all states, with the next state always being IK_ABORT. This event is generated when a user manually aborts a transaction.

Note that when a new event code is added to the event table, the state table for every existing transaction must be updated to contain a column for that event, even when that event is not used by that transaction.

Can the new transaction be patterned after an existing transaction?

Significant design and development time will be saved if the new transaction can be patterned after an existing transaction type. The current selection of transaction types covers many of the classes of transactions which may be expected in the V0 IMS system.

If the new transaction has a simple structure, e.g. one message sent to the server and one response received from the server, then the state machine for the new transaction can be patterned after the state machine for the Order transaction. If the new transaction requires multiple exchanges of messages between the client and server, then the state machine for the new transaction may be patterned after the Inventory Search transaction, in which result and acknowledgement messages are exchanged until the server has transmitted all of its results. If a different type (i.e. non-ODL) of data must be transmitted by the server, then the new transaction may be patterned after the existing Integrated Browse transaction. If a subsequent network connection is required to a location other than the currently connected server, the new transaction may be patterned after the existing Directory Search transaction. Other classes of transactions are possible, such as a transaction which requires sending a message to a server, and then closing the connection without waiting for a response. Another possibility is a transaction in which a non-ODL message is transmitted to the server by the client.

What new message types are required?

Most existing transaction types send their transaction request to the server using the IK_SEARCH message type. The detailed contents of this message specify the exact type of transaction being requested. However, the wide variety of formats and size of the messages returned by the server require that each possible response have its own message type. For example, the results of an inventory search are returned in one or more IK_INVRESULT messages. New transactions should create new message types for request messages that they transmit, in order to better segregate this functionality. Any new transaction will also likely require the creation of a new message type to hold any results that may be returned by the server.

What changes will be required at the client side?

The transaction processing on the client side of the system is highly regimented, since it is implemented as a state machine. Therefore, great care must be taken to ensure that the new transaction, and any new messages and events, are properly integrated into the existing code, to avoid corrupting the existing logic. New transactions, messages and events always require changes in the client source code.

Client-side changes are typically required at two levels for full implementation. At the low level, changes are required to implement new state transition table entries for new events and states. Changes will also be required in header files to define new constants for any new states and events. New functions must also be defined to implement any new states, and pointers to those functions placed in the appropriate arrays. Special-case changes may also be required in other low-level code to handle any unique situations created by the new transaction.

At the high level, the user interface must be updated to support the new transaction. Typically, this involves modifying the search screen (or its equivalent) to allow the user to enter the information required for the new transaction. The communication status screen code must then usually be updated to allow the client to monitor the progress of the new transaction. Finally, a new screen may be required to allow the user to view and manipulate the results of the new transaction.

Note that in general, the low-level changes may be implemented before the high-level changes, but the opposite is not usually true. This document will only discuss the low-level changes required to implement a new transaction.

What changes will be required at the server side?

Server-side processing in the V0 IMS system is considerably "looser" in approach than client-side processing, since the servers do not use a state machine approach to client communication. Typically, each type of transaction request sent to a server is handled by a single set of functions, and the code executed is determined at run-time based on the type of request embodied in the message received from the client. If an unknown request is received, the server typically aborts the transaction. Therefore, any new transaction types must be implemented in cooperation with the server sites. At the minimum, the server sites must be notified of the format of new message types so that appropriate server-side changes can be made.

OK, you can touch the code now...

Introduction

Now that the preliminaries are complete, the code modifications can begin. The low-level changes consist of changes to with the IK_ prefix. These files contain code which is independent of the user interface, and indeed form the basis of the code which is shared between the V0 IMS GUI (Graphical User Interface) client, the (obsolete) ChUI (Character User Interface) client, the V0 IMS servers, and the V0 IMS Web gateway. Examples of changes at this level include updating the arrays which define the state tables, and creating assembly and ingest functions for new message types,

Code changes

Adding a new state

When a new state is created, a code must be added to the list of states which compose the FSM for the transaction. If the transaction itself is new, the state table for the transaction must be created as well (see below). The list of valid states for a transaction is specified in the header file IK_Nm.h (Nm = Network manager), with a transaction-specific C-language enum (enumeration). For any given transaction, the state codes are valued sequentially, beginning with the value 0. For each enumeration, there is an accompanying constant (in the form of a C preprocessor #define directive) that contains the number of states in the enumeration. If a new state code is added to the enumeration, the corresponding count of state codes for the transaction must be incremented.

Adding a new event code

The list of valid event codes is shared by all of the state tables in the client. When a new event code is added, this global table must be updated, as well as every existing state table, to ensure that every state table contains a column for every possible event. The list of event codes is defined in IK_Nm.h, in the enumeration IK_EventCode.

Note - when a new event code is added, a new column must be added to each existing state table to account for the event code, since every state table contains a column for every possible event code.

Adding a new state transition table

A new state transition table is implemented by creating an array in the file IK_Nmtbl.c. The array is a two-dimensional C-language array, with one row per state in the transaction, and one column per possible event code. The arrays are initialized by listing the table contents row-by-row. Each value in the list is a state code valid for the current transaction, or the constant IK_ABNORMAL, which indicates an invalid state transition (always a fatal error).

Adding a new tree index table

A tree index table is used to ensure that the proper entry in the ODL tree table (part of the CONNECTION_INFO structure maintained for each connection) is used during the current state. Each transaction has its own tree index table. The tree index table is a C-language array in the file IK_Nmtbl.c, with one entry per state for the current transaction. Each value is the IK_ArgCode constant for the appropriate tree type (IK_ArgCode values are discussed in the section on adding new message types). The value IK_ABNORMAL should be used when no ODL tree is used by a state.

Adding a state action function table

A state action function table defines which functions are called to implement states in the FSM for a transaction. The table is implemented as a C-language array in the file IK_Nmtbl.c, with one entry per state in the transaction. Each value is the name of the function which implements the corresponding state. NULL values are illegal - each state must have a corresponding state action function. Each state action function must have the following form of C function prototype:

IK_EventCode funcname(CONNECTION_INFO *pCI, IK_ArgCode argCode)

indicating a function which returns a value of type IK_EventCode, and which takes two arguments - a pointer to a CONNECTION_INFO structure for the current connection, and an IK_ArgCode value indicating which ODL tree (if any) should be used from the table of ODL trees within the CONNECTION_INFO structure. The IK_EventCode value returned by the function should be appropriate for the row for the current state in the state transition table.

Adding a new message type

Message types are listed in the message type table, also known (for historical reasons) as the "argument code" table. This table is defined in the IK_ArgCode enumeration in the header file IK_Nm.h. Place an entry at the end of this enumeration for the new message type; the entry must have the IK_ prefix. Then update the preprocessor definition of IK_NUM_ARGCODES to reflect the new count of message types (the number of possible values in the IK_ArgCode enumeration).

Example: Adding a Server Status transaction

Introduction

This section will provide a complete (if simple) example of how to add a new transaction to the V0 IMS system. The new transaction is called a "server status request", and is intended to provide the user with a summary of the status of the server, such as the availability of any new datasets.

Design the state table

The overall structure of the server status transaction is identical to that for the FTP browse or order transaction. A single message is transmitted to the server, and a single message is received in response. The state diagram is shown in Figure 2:

· Figure 2: State diagram for example Server Status transaction.

Note that two new event codes have been added - IK_GOT_SERVERSTATUS and IK_INGEST_SERVERSTATUS_SUCCESS; existing state tables must be updated when these state codes are implemented.

Create the state code list

The state code list for the server status transaction is added to IK_Nm.h as:

...

#define IK_N_SERVERSTATUS_STATES (9)

typedef enum IK_ServerStatusState {

IK_SERVERSTATUS_BEGIN,

IK_SERVERSTATUS_CONNECT,

IK_SERVERSTATUS_TRANSMIT,

IK_SERVERSTATUS_ABORT,

IK_SERVERSTATUS_QUIT,

IK_SERVERSTATUS_LISTEN,

IK_SERVERSTATUS_INGEST,

IK_SERVERSTATUS_CLOSE,

IK_SERVERSTATUS_TERMINATE

} IK_ServerStatusState;

...

Add new event codes

New event codes are required to indicate the receipt of a server status response message (IK_GOT_SERVER_STATUS) and to indicate successful ingest of the response message (IK_INGEST_SERVER_STATUS_SUCCESS). These new events are added to the list of event codes in IK_Nm.h as follows:

...

#define IK_SM_NUM_EVENTS (30)

typedef enum IK_EventCode {

IK_ARCHIVE_DOWN,

IK_CLIENT_CRASH,

...

IK_GOT_SERVERSTATUS,

IK_INGEST_SERVERSTATUS_SUCCESS

} IK_EventCode;

...

Create the state transition table

The state transition table for the server status transaction is created in IK_Nmtbl.c as follows:

...

int IK_serverstat_table[IK_N_SERVERSTATUS_STATES][IK_SM_NUM_EVENTS] = {

/* State code = 0 (IK_SERVERSTATUS_BEGIN) */

IK_SERVERSTATUS_TERMINATE,
/* Event code 0 (IK_ARCHIVE_DOWN) */

IK_ABNORMAL,

/* Event code 1 (IK_CLIENT_CRASH) */

IK_SERVERSTATUS_TERMINATE,
/* Event code 2 (IK_CLIENTSYS_ERROR) */

IK_SERVERSTATUS_ABORT,
/* Event code 3 (IK_ABORT_SEARCH) */

IK_SERVERSTATUS_CONNECT,
/* Event code 4 (IK_CONNECT_IN_PROGRESS) */

IK_ABNORMAL,

/* Event code 5 (IK_CONNECT_OPEN) */

IK_ABNORMAL,

/* Event code 6 (IK_CONNECT_FAILED) */

IK_ABNORMAL,

/* Event code 7 (IK_CONNECT_CLOSED) */

IK_ABNORMAL,

/* Event code 8 (IK_TRANSMITTED) */

IK_ABNORMAL,

/* Event code 9 (IK_GOT_NODATA) */

IK_ABNORMAL,

/* Event code 10 (IK_GOT_INVRESULT) */

IK_ABNORMAL,

/* Event code 11 (IK_GOT_PRODRESULT) */

IK_ABNORMAL,

/* Event code 12 (IK_GOT_FTPBROWSE) */

IK_ABNORMAL,

/* Event code 13 (IK_GOT_MDDIFS) */

IK_ABNORMAL,

/* Event code 14 (IK_GOT_INTBROWSE) */

IK_ABNORMAL,

/* Event code 15 (IK_GOT_QUIT) */

IK_ABNORMAL,

/* Event code 16 (IK_GOT_ABORT) */

IK_ABNORMAL,

/* Event code 17 (IK_GOT_ACK) */

IK_ABNORMAL,

/* Event code 18 (IK_IMAGE_RECEIVED) */

IK_ABNORMAL,

/* Event code 19 (IK_IMAGE_COMPLETE) */

IK_ABNORMAL,

/* Event code 20 (IK_GCMD_SUCCESS) */

IK_ABNORMAL,

/* Event code 21 (IK_GCMD_AMBIGOUS) */

IK_ABNORMAL,

/* Event code 22 (IK_INGESTINV_SUCCESS) */

IK_ABNORMAL,

/* Event code 23 (IK_INGESTFTPB_SUCCESS) */

IK_ABNORMAL,

/* Event code 24 (IK_INGESTPR_SUCCESS) */

IK_ABNORMAL,

/* Event code 25 (IK_INGESTIMG_SUCCESS) */

IK_ABNORMAL,

/* Event code 26 (IK_INGESTGCMD_SUCCESS) */

IK_ABNORMAL,

/* Event code 27 (IK_TERMINATED) */

IK_ABNORMAL,

/* Event code 28 (IK_GOT_SERVER_STATUS) */

IK_ABNORMAL,

/* Event code 29 (IK_INGEST_SERVER_STATUS_SUCCESS) */

/* State code = 1 (IK_SERVERSTATUS_CONNECT) */

IK_SERVERSTATUS_CLOSE,
/* Event code 0 (IK_ARCHIVE_DOWN) */

IK_ABNORMAL,

/* Event code 1 (IK_CLIENT_CRASH) */

IK_SERVERSTATUS_CLOSE,
/* Event code 2 (IK_CLIENTSYS_ERROR) */

IK_SERVERSTATUS_ABORT,
/* Event code 3 (IK_ABORT_SEARCH) */

IK_ABNORMAL,

/* Event code 4 (IK_CONNECT_IN_PROGRESS) */

IK_SERVERSTATUS_TRANSMIT,
/* Event code 5 (IK_CONNECT_OPEN) */

IK_SERVERSTATUS_CONNECT,
/* Event code 6 (IK_CONNECT_FAILED) */

IK_ABNORMAL,

/* Event code 7 (IK_CONNECT_CLOSED) */

IK_ABNORMAL,

/* Event code 8 (IK_TRANSMITTED) */

IK_ABNORMAL,

/* Event code 9 (IK_GOT_NODATA) */

IK_ABNORMAL,

/* Event code 10 (IK_GOT_INVRESULT) */

IK_ABNORMAL,

/* Event code 11 (IK_GOT_PRODRESULT) */

IK_ABNORMAL,

/* Event code 12 (IK_GOT_FTPBROWSE) */

IK_ABNORMAL,

/* Event code 13 (IK_GOT_MDDIFS) */

IK_ABNORMAL,

/* Event code 14 (IK_GOT_INTBROWSE) */

IK_ABNORMAL,

/* Event code 15 (IK_GOT_QUIT) */

IK_ABNORMAL,

/* Event code 16 (IK_GOT_ABORT) */

IK_ABNORMAL,

/* Event code 17 (IK_GOT_ACK) */

IK_ABNORMAL,

/* Event code 18 (IK_IMAGE_RECEIVED) */

IK_ABNORMAL,

/* Event code 19 (IK_IMAGE_COMPLETE) */

IK_ABNORMAL,

/* Event code 20 (IK_GCMD_SUCCESS) */

IK_ABNORMAL,

/* Event code 21 (IK_GCMD_AMBIGOUS) */

IK_ABNORMAL,

/* Event code 22 (IK_INGESTINV_SUCCESS) */

IK_ABNORMAL,

/* Event code 23 (IK_INGESTFTPB_SUCCESS) */

IK_ABNORMAL,

/* Event code 24 (IK_INGESTPR_SUCCESS) */

IK_ABNORMAL,

/* Event code 25 (IK_INGESTIMG_SUCCESS) */

IK_ABNORMAL,

/* Event code 26 (IK_INGESTGCMD_SUCCESS) */

IK_ABNORMAL,

/* Event code 27 (IK_TERMINATED) */

IK_ABNORMAL,

/* Event code 28 (IK_GOT_SERVER_STATUS) */

IK_ABNORMAL,

/* Event code 29 (IK_INGEST_SERVER_STATUS_SUCCESS) */

/* State code = 2 (IK_SERVERSTATUS_TRANSMIT) */

IK_SERVERSTATUS_CLOSE,
/* Event code 0 (IK_ARCHIVE_DOWN) */

IK_ABNORMAL,

/* Event code 1 (IK_CLIENT_CRASH) */

IK_SERVERSTATUS_CLOSE,
/* Event code 2 (IK_CLIENTSYS_ERROR) */

IK_SERVERSTATUS_ABORT,
/* Event code 3 (IK_ABORT_SEARCH) */

IK_ABNORMAL,

/* Event code 4 (IK_CONNECT_IN_PROGRESS) */

IK_ABNORMAL,

/* Event code 5 (IK_CONNECT_OPEN) */

IK_ABNORMAL,

/* Event code 6 (IK_CONNECT_FAILED) */

IK_ABNORMAL,

/* Event code 7 (IK_CONNECT_CLOSED) */

IK_SERVERSTATUS_LISTEN,
/* Event code 8 (IK_TRANSMITTED) */

IK_ABNORMAL,

/* Event code 9 (IK_GOT_NODATA) */

IK_ABNORMAL,

/* Event code 10 (IK_GOT_INVRESULT) */

IK_ABNORMAL,

/* Event code 11 (IK_GOT_PRODRESULT) */

IK_ABNORMAL,

/* Event code 12 (IK_GOT_FTPBROWSE) */

IK_ABNORMAL,

/* Event code 13 (IK_GOT_MDDIFS) */

IK_ABNORMAL,

/* Event code 14 (IK_GOT_INTBROWSE) */

IK_ABNORMAL,

/* Event code 15 (IK_GOT_QUIT) */

IK_ABNORMAL,

/* Event code 16 (IK_GOT_ABORT) */

IK_ABNORMAL,

/* Event code 17 (IK_GOT_ACK) */

IK_ABNORMAL,

/* Event code 18 (IK_IMAGE_RECEIVED) */

IK_ABNORMAL,

/* Event code 19 (IK_IMAGE_COMPLETE) */

IK_ABNORMAL,

/* Event code 20 (IK_GCMD_SUCCESS) */

IK_ABNORMAL,

/* Event code 21 (IK_GCMD_AMBIGOUS) */

IK_ABNORMAL,

/* Event code 22 (IK_INGESTINV_SUCCESS) */

IK_ABNORMAL,

/* Event code 23 (IK_INGESTFTPB_SUCCESS) */

IK_ABNORMAL,

/* Event code 24 (IK_INGESTPR_SUCCESS) */

IK_ABNORMAL,

/* Event code 25 (IK_INGESTIMG_SUCCESS) */

IK_ABNORMAL,

/* Event code 26 (IK_INGESTGCMD_SUCCESS) */

IK_ABNORMAL,

/* Event code 27 (IK_TERMINATED) */

IK_ABNORMAL,

/* Event code 28 (IK_GOT_SERVER_STATUS) */

IK_ABNORMAL,

/* Event code 29 (IK_INGEST_SERVER_STATUS_SUCCESS) */

/* State code = 3 (IK_SERVERSTATUS_ABORT) */

IK_SERVERSTATUS_CLOSE,
/* Event code 0 (IK_ARCHIVE_DOWN) */

IK_ABNORMAL,

/* Event code 1 (IK_CLIENT_CRASH) */

IK_SERVERSTATUS_CLOSE,
/* Event code 2 (IK_CLIENTSYS_ERROR) */

IK_SERVERSTATUS_TERMINATE,
/* Event code 3 (IK_ABORT_SEARCH) */

IK_ABNORMAL,

/* Event code 4 (IK_CONNECT_IN_PROGRESS) */

IK_ABNORMAL,

/* Event code 5 (IK_CONNECT_OPEN) */

IK_ABNORMAL,

/* Event code 6 (IK_CONNECT_FAILED) */

IK_ABNORMAL,

/* Event code 7 (IK_CONNECT_CLOSED) */

IK_SERVERSTATUS_CLOSE,
/* Event code 8 (IK_TRANSMITTED) */

IK_ABNORMAL,

/* Event code 9 (IK_GOT_NODATA) */

IK_ABNORMAL,

/* Event code 10 (IK_GOT_INVRESULT) */

IK_ABNORMAL,

/* Event code 11 (IK_GOT_PRODRESULT) */

IK_ABNORMAL,

/* Event code 12 (IK_GOT_FTPBROWSE) */

IK_ABNORMAL,

/* Event code 13 (IK_GOT_MDDIFS) */

IK_ABNORMAL,

/* Event code 14 (IK_GOT_INTBROWSE) */

IK_ABNORMAL,

/* Event code 15 (IK_GOT_QUIT) */

IK_ABNORMAL,

/* Event code 16 (IK_GOT_ABORT) */

IK_ABNORMAL,

/* Event code 17 (IK_GOT_ACK) */

IK_ABNORMAL,

/* Event code 18 (IK_IMAGE_RECEIVED) */

IK_ABNORMAL,

/* Event code 19 (IK_IMAGE_COMPLETE) */

IK_ABNORMAL,

/* Event code 20 (IK_GCMD_SUCCESS) */

IK_ABNORMAL,

/* Event code 21 (IK_GCMD_AMBIGOUS) */

IK_ABNORMAL,

/* Event code 22 (IK_INGESTINV_SUCCESS) */

IK_ABNORMAL,

/* Event code 23 (IK_INGESTFTPB_SUCCESS) */

IK_ABNORMAL,

/* Event code 24 (IK_INGESTPR_SUCCESS) */

IK_ABNORMAL,

/* Event code 25 (IK_INGESTIMG_SUCCESS) */

IK_ABNORMAL,

/* Event code 26 (IK_INGESTGCMD_SUCCESS) */

IK_ABNORMAL,

/* Event code 27 (IK_TERMINATED) */

IK_ABNORMAL,

/* Event code 28 (IK_GOT_SERVER_STATUS) */

IK_ABNORMAL,

/* Event code 29 (IK_INGEST_SERVER_STATUS_SUCCESS) */

/* State code = 4 (IK_SERVERSTATUS_QUIT) */

IK_SERVERSTATUS_CLOSE,
/* Event code 0 (IK_ARCHIVE_DOWN) */

IK_ABNORMAL,

/* Event code 1 (IK_CLIENT_CRASH) */

IK_SERVERSTATUS_CLOSE,
/* Event code 2 (IK_CLIENTSYS_ERROR) */

IK_SERVERSTATUS_ABORT,
/* Event code 3 (IK_ABORT_SEARCH) */

IK_ABNORMAL,

/* Event code 4 (IK_CONNECT_IN_PROGRESS) */

IK_ABNORMAL,

/* Event code 5 (IK_CONNECT_OPEN) */

IK_ABNORMAL,

/* Event code 6 (IK_CONNECT_FAILED) */

IK_ABNORMAL,

/* Event code 7 (IK_CONNECT_CLOSED) */

IK_SERVERSTATUS_CLOSE,
/* Event code 8 (IK_TRANSMITTED) */

IK_ABNORMAL,

/* Event code 9 (IK_GOT_NODATA) */

IK_ABNORMAL,

/* Event code 10 (IK_GOT_INVRESULT) */

IK_ABNORMAL,

/* Event code 11 (IK_GOT_PRODRESULT) */

IK_ABNORMAL,

/* Event code 12 (IK_GOT_FTPBROWSE) */

IK_ABNORMAL,

/* Event code 13 (IK_GOT_MDDIFS) */

IK_ABNORMAL,

/* Event code 14 (IK_GOT_INTBROWSE) */

IK_ABNORMAL,

/* Event code 15 (IK_GOT_QUIT) */

IK_ABNORMAL,

/* Event code 16 (IK_GOT_ABORT) */

IK_ABNORMAL,

/* Event code 17 (IK_GOT_ACK) */

IK_ABNORMAL,

/* Event code 18 (IK_IMAGE_RECEIVED) */

IK_ABNORMAL,

/* Event code 19 (IK_IMAGE_COMPLETE) */

IK_ABNORMAL,

/* Event code 20 (IK_GCMD_SUCCESS) */

IK_ABNORMAL,

/* Event code 21 (IK_GCMD_AMBIGOUS) */

IK_ABNORMAL,

/* Event code 22 (IK_INGESTINV_SUCCESS) */

IK_ABNORMAL,

/* Event code 23 (IK_INGESTFTPB_SUCCESS) */

IK_ABNORMAL,

/* Event code 24 (IK_INGESTPR_SUCCESS) */

IK_ABNORMAL,

/* Event code 25 (IK_INGESTIMG_SUCCESS) */

IK_ABNORMAL,

/* Event code 26 (IK_INGESTGCMD_SUCCESS) */

IK_ABNORMAL,

/* Event code 27 (IK_TERMINATED) */

IK_ABNORMAL,

/* Event code 28 (IK_GOT_SERVER_STATUS) */

IK_ABNORMAL,

/* Event code 29 (IK_INGEST_SERVER_STATUS_SUCCESS) */

/* State code = 5 (IK_SERVERSTATUS_LISTEN) */

IK_SERVERSTATUS_CLOSE,
/* Event code 0 (IK_ARCHIVE_DOWN) */

IK_ABNORMAL,

/* Event code 1 (IK_CLIENT_CRASH) */

IK_SERVERSTATUS_CLOSE,
/* Event code 2 (IK_CLIENTSYS_ERROR) */

IK_SERVERSTATUS_ABORT,
/* Event code 3 (IK_ABORT_SEARCH) */

IK_ABNORMAL,

/* Event code 4 (IK_CONNECT_IN_PROGRESS) */

IK_ABNORMAL,

/* Event code 5 (IK_CONNECT_OPEN) */

IK_ABNORMAL,

/* Event code 6 (IK_CONNECT_FAILED) */

IK_ABNORMAL,

/* Event code 7 (IK_CONNECT_CLOSED) */

IK_ABNORMAL,

/* Event code 8 (IK_TRANSMITTED) */

IK_SERVERSTATUS_LISTEN,
/* Event code 9 (IK_GOT_NODATA) */

IK_SERVERSTATUS_QUIT,
/* Event code 10 (IK_GOT_INVRESULT) */

IK_SERVERSTATUS_QUIT,
/* Event code 11 (IK_GOT_PRODRESULT) */

IK_SERVERSTATUS_QUIT,
/* Event code 12 (IK_GOT_FTPBROWSE) */

IK_SERVERSTATUS_QUIT,
/* Event code 13 (IK_GOT_MDDIFS) */

IK_SERVERSTATUS_QUIT,
/* Event code 14 (IK_GOT_INTBROWSE) */

IK_SERVERSTATUS_CLOSE,
/* Event code 15 (IK_GOT_QUIT) */

IK_ABNORMAL,

/* Event code 16 (IK_GOT_ABORT) */

IK_SERVERSTATUS_QUIT,
/* Event code 17 (IK_GOT_ACK) */

IK_ABNORMAL,

/* Event code 18 (IK_IMAGE_RECEIVED) */

IK_ABNORMAL,

/* Event code 19 (IK_IMAGE_COMPLETE) */

IK_ABNORMAL,

/* Event code 20 (IK_GCMD_SUCCESS) */

IK_ABNORMAL,

/* Event code 21 (IK_GCMD_AMBIGOUS) */

IK_ABNORMAL,

/* Event code 22 (IK_INGESTINV_SUCCESS) */

IK_ABNORMAL,

/* Event code 23 (IK_INGESTFTPB_SUCCESS) */

IK_ABNORMAL,

/* Event code 24 (IK_INGESTPR_SUCCESS) */

IK_ABNORMAL,

/* Event code 25 (IK_INGESTIMG_SUCCESS) */

IK_ABNORMAL,

/* Event code 26 (IK_INGESTGCMD_SUCCESS) */

IK_ABNORMAL,

/* Event code 27 (IK_TERMINATED) */

IK_SERVERSTATUS_INGEST,
/* Event code 28 (IK_GOT_SERVER_STATUS) */

IK_ABNORMAL,

/* Event code 29 (IK_INGEST_SERVER_STATUS_SUCCESS) */

/* State code = 6 (IK_SERVERSTATUS_INGEST) */

IK_ABNORMAL,

/* Event code 0 (IK_ARCHIVE_DOWN) */

IK_ABNORMAL,

/* Event code 1 (IK_CLIENT_CRASH) */

IK_SERVERSTATUS_QUIT,
/* Event code 2 (IK_CLIENTSYS_ERROR) */

IK_SERVERSTATUS_ABORT,
/* Event code 3 (IK_ABORT_SEARCH) */

IK_ABNORMAL,

/* Event code 4 (IK_CONNECT_IN_PROGRESS) */

IK_ABNORMAL,

/* Event code 5 (IK_CONNECT_OPEN) */

IK_ABNORMAL,

/* Event code 6 (IK_CONNECT_FAILED) */

IK_ABNORMAL,

/* Event code 7 (IK_CONNECT_CLOSED) */

IK_ABNORMAL,

/* Event code 8 (IK_TRANSMITTED) */

IK_ABNORMAL,

/* Event code 9 (IK_GOT_NODATA) */

IK_ABNORMAL,

/* Event code 10 (IK_GOT_INVRESULT) */

IK_ABNORMAL,

/* Event code 11 (IK_GOT_PRODRESULT) */

IK_ABNORMAL,

/* Event code 12 (IK_GOT_FTPBROWSE) */

IK_ABNORMAL,

/* Event code 13 (IK_GOT_MDDIFS) */

IK_ABNORMAL,

/* Event code 14 (IK_GOT_INTBROWSE) */

IK_ABNORMAL,

/* Event code 15 (IK_GOT_QUIT) */

IK_ABNORMAL,

/* Event code 16 (IK_GOT_ABORT) */

IK_ABNORMAL,

/* Event code 17 (IK_GOT_ACK) */

IK_ABNORMAL,

/* Event code 18 (IK_IMAGE_RECEIVED) */

IK_ABNORMAL,

/* Event code 19 (IK_IMAGE_COMPLETE) */

IK_ABNORMAL,

/* Event code 20 (IK_GCMD_SUCCESS) */

IK_ABNORMAL,

/* Event code 21 (IK_GCMD_AMBIGOUS) */

IK_ABNORMAL,

/* Event code 22 (IK_INGESTINV_SUCCESS) */

IK_ABNORMAL,

/* Event code 23 (IK_INGESTFTPB_SUCCESS) */

IK_ABNORMAL,

/* Event code 24 (IK_INGESTPR_SUCCESS) */

IK_ABNORMAL,

/* Event code 25 (IK_INGESTIMG_SUCCESS) */

IK_ABNORMAL,

/* Event code 26 (IK_INGESTGCMD_SUCCESS) */

IK_ABNORMAL,

/* Event code 27 (IK_TERMINATED) */

IK_ABNORMAL,

/* Event code 28 (IK_GOT_SERVER_STATUS) */

IK_SERVERSTATUS_CLOSE,
/* Event code 29 (IK_INGEST_SERVER_STATUS_SUCCESS) */

/* State code = 7 (IK_SERVERSTATUS_CLOSE) */

IK_ABNORMAL,

/* Event code 0 (IK_ARCHIVE_DOWN) */

IK_ABNORMAL,

/* Event code 1 (IK_CLIENT_CRASH) */

IK_SERVERSTATUS_TERMINATE,
/* Event code 2 (IK_CLIENTSYS_ERROR) */

IK_SERVERSTATUS_ABORT,
/* Event code 3 (IK_ABORT_SEARCH) */

IK_ABNORMAL,

/* Event code 4 (IK_CONNECT_IN_PROGRESS) */

IK_ABNORMAL,

/* Event code 5 (IK_CONNECT_OPEN) */

IK_ABNORMAL,

/* Event code 6 (IK_CONNECT_FAILED) */

IK_SERVERSTATUS_TERMINATE,
/* Event code 7 (IK_CONNECT_CLOSED) */

IK_ABNORMAL,

/* Event code 8 (IK_TRANSMITTED) */

IK_ABNORMAL,

/* Event code 9 (IK_GOT_NODATA) */

IK_ABNORMAL,

/* Event code 10 (IK_GOT_INVRESULT) */

IK_ABNORMAL,

/* Event code 11 (IK_GOT_PRODRESULT) */

IK_ABNORMAL,

/* Event code 12 (IK_GOT_FTPBROWSE) */

IK_ABNORMAL,

/* Event code 13 (IK_GOT_MDDIFS) */

IK_ABNORMAL,

/* Event code 14 (IK_GOT_INTBROWSE) */

IK_ABNORMAL,

/* Event code 15 (IK_GOT_QUIT) */

IK_ABNORMAL,

/* Event code 16 (IK_GOT_ABORT) */

IK_ABNORMAL,

/* Event code 17 (IK_GOT_ACK) */

IK_ABNORMAL,

/* Event code 18 (IK_IMAGE_RECEIVED) */

IK_ABNORMAL,

/* Event code 19 (IK_IMAGE_COMPLETE) */

IK_ABNORMAL,

/* Event code 20 (IK_GCMD_SUCCESS) */

IK_ABNORMAL,

/* Event code 21 (IK_GCMD_AMBIGOUS) */

IK_ABNORMAL,

/* Event code 22 (IK_INGESTINV_SUCCESS) */

IK_ABNORMAL,

/* Event code 23 (IK_INGESTFTPB_SUCCESS) */

IK_ABNORMAL,

/* Event code 24 (IK_INGESTPR_SUCCESS) */

IK_ABNORMAL,

/* Event code 25 (IK_INGESTIMG_SUCCESS) */

IK_ABNORMAL,

/* Event code 26 (IK_INGESTGCMD_SUCCESS) */

IK_ABNORMAL,

/* Event code 27 (IK_TERMINATED) */

IK_ABNORMAL,

/* Event code 28 (IK_GOT_SERVER_STATUS) */

IK_ABNORMAL,

/* Event code 29 (IK_INGEST_SERVER_STATUS_SUCCESS) */

/* State code = 8 (IK_SERVERSTATUS_TERMINATE) */

IK_ABNORMAL,

/* Event code 0 (IK_ARCHIVE_DOWN) */

IK_ABNORMAL,

/* Event code 1 (IK_CLIENT_CRASH) */

IK_ABNORMAL,

/* Event code 2 (IK_CLIENTSYS_ERROR) */

IK_ABNORMAL,

/* Event code 3 (IK_ABORT_SEARCH) */

IK_ABNORMAL,

/* Event code 4 (IK_CONNECT_IN_PROGRESS) */

IK_ABNORMAL,

/* Event code 5 (IK_CONNECT_OPEN) */

IK_ABNORMAL,

/* Event code 6 (IK_CONNECT_FAILED) */

IK_ABNORMAL,

/* Event code 7 (IK_CONNECT_CLOSED) */

IK_ABNORMAL,

/* Event code 8 (IK_TRANSMITTED) */

IK_ABNORMAL,

/* Event code 9 (IK_GOT_NODATA) */

IK_ABNORMAL,

/* Event code 10 (IK_GOT_INVRESULT) */

IK_ABNORMAL,

/* Event code 11 (IK_GOT_PRODRESULT) */

IK_ABNORMAL,

/* Event code 12 (IK_GOT_FTPBROWSE) */

IK_ABNORMAL,

/* Event code 13 (IK_GOT_MDDIFS) */

IK_ABNORMAL,

/* Event code 14 (IK_GOT_INTBROWSE) */

IK_ABNORMAL,

/* Event code 15 (IK_GOT_QUIT) */

IK_ABNORMAL,

/* Event code 16 (IK_GOT_ABORT) */

IK_ABNORMAL,

/* Event code 17 (IK_GOT_ACK) */

IK_ABNORMAL,

/* Event code 18 (IK_IMAGE_RECEIVED) */

IK_ABNORMAL,

/* Event code 19 (IK_IMAGE_COMPLETE) */

IK_ABNORMAL,

/* Event code 20 (IK_GCMD_SUCCESS) */

IK_ABNORMAL,

/* Event code 21 (IK_GCMD_AMBIGOUS) */

IK_ABNORMAL,

/* Event code 22 (IK_INGESTINV_SUCCESS) */

IK_ABNORMAL,

/* Event code 23 (IK_INGESTFTPB_SUCCESS) */

IK_ABNORMAL,

/* Event code 24 (IK_INGESTPR_SUCCESS) */

IK_ABNORMAL,

/* Event code 25 (IK_INGESTIMG_SUCCESS) */

IK_ABNORMAL,

/* Event code 26 (IK_INGESTGCMD_SUCCESS) */

IK_SERVERSTATUS_TERMINATE
/* Event code 27 (IK_TERMINATED) */

IK_ABNORMAL,

/* Event code 28 (IK_GOT_SERVER_STATUS) */

IK_ABNORMAL,

/* Event code 29 (IK_INGEST_SERVER_STATUS_SUCCESS) */

};

...

Create the tree index table

...

/* Tree Index Table */

int IK_smarg_prsrch[IK_NPRES_STATES] = {

 IK_ABNORMAL, /* IK_SERVERSTATUS_BEGIN */

 IK_ABNORMAL, /* IK_SERVERSTATUS_CONNECT */

 IK_SEARCH, /* IK_SERVERSTATUS_TRANSMIT */

 IK_ABORT, /* IK_SERVERSTATUS_ABORT */

 IK_QUIT, /* IK_SERVERSTATUS_QUIT */

 IK_ABNORMAL, /* IK_SERVERSTATUS_LISTEN */

 IK_ABNORMAL, /* IK_SERVERSTATUS_INGEST */

 IK_ABNORMAL, /* IK_SERVERSTATUS_CLOSE */

 IK_ABNORMAL /* IK_SERVERSTATUS_TERMINATE */

};

...

Create the state action function table and new state action functions

...

/* State Action Function Table */

IK_EventCode (*IK_prsrch_func[IK_NPRES_STATES])() = {

 IK_BeginConnection, /* IK_SERVERSTATUS_BEGIN */

 IK_EstablishConnection, /* IK_SERVERSTATUS_CONNECT */

 IK_TransmitTree, /* IK_SERVERSTATUS_TRANSMIT */

 IK_Abort, /* IK_SERVERSTATUS_ABORT */

 IK_TransmitTree, /* IK_SERVERSTATUS_QUIT */

 IK_ListenTree, /* IK_SERVERSTATUS_LISTEN */

 IK_IngestProdResults, /* IK_SERVERSTATUS_INGEST */

 IK_CloseConnection, /* IK_SERVERSTATUS_CLOSE */

 IK_Terminate /* IK_SERVERSTATUS_TERMINATE */

};

...

Add the IK_SERVER_STATUS message type

The new message type is first defined in the message type list by modifying IK_Nm.h as follows:

...

/* Define the total number of argument codes. */

#define IK_NUM_ARGCODES (13)

...

and

...

typedef enum IK_ArgCode {

 IK_ABORT,

 IK_QUIT,

 IK_ACK,

 IK_SEARCH,

 IK_INVRESULT,

 IK_PRODRESULT,

 IK_FTPBROWSE,

 IK_INTBROWSE,

 IK_MDDIF,

 IK_XX,

 IK_BIMAGE,

 IK_STATS_REPORT,

 IK_SERVER_STATUS

} IK_ArgCode;

...

� EMBED Canvas.5.Drawing \s ���

� Actually, it's the IK_XXX_BEGIN state, where XXX is replaced by an abbreviation for the transaction type. However, for the sake of brevity, common states such as IK_XXX_BEGIN will be abbreviated without the XXX_ portion.

2
3

_948254154.ttf

