Requirements for a Redesign and Overhaul of the Version 0 IMS Communications Software and Associated Code

 Introduction

Purpose

This document describes the requirements for the effort to redesign and re-implement the communications software and associated code used in the EOSDIS Version 0 IMS clients and servers, and derivative software, such as the Version 0 IMS World-Wide Web gateway.

Target Audience

This document should be read by government staff, HSTX managers and programmers involved in the development of software which uses the V0 IMS communication code. This definition covers the code commonly referred to as the IK layer (code involved in ODL message transmission, receipt, and ingest), and the poller functions.

Background

The V0 IMS

The client

The EOSDIS Version 0 client was developed over a period of several years in a rapid-prototyping effort, with the aim of exploring new user-interface, communication and search technologies for search and retrieval of earth science data. As a prototype, the code was developed rapidly and with a minimum level of documentation. Given the experimental nature of the project, with an emphasis on the quick development of new functionality over other criteria, this was an excellent initial approach. In the early stages of the project, only a few data centers were active, and scalability was not a requirement. It was more important at the time to illustrate the appropriateness of the interface and approach to the overall problem of distributed earth science data access, as opposed to ensuring that the system would scale up to many more data centers.

In general, the user specifies search criteria, which are then transmitted to one or more data centers for processing. The client monitors the status of each connection for incoming results, and updates the user interface appropriately. Connection status is stored using a state machine approach. Monitoring is performed by forcing the user interface code to periodically invoke a polling function. The polling function checks for changes in the status of each connection, and initiates updates to the state machine to reflect the change in status.

The servers

The V0 IMS servers at the various data centers were developed in parallel with the V0 IMS client software. The servers are actually gateways which map ODL-based query messages into a format appropriate for the local database, and then translate the results back into ODL format for transmission to the Version 0 client. The servers are typically implemented as standard TCP/IP concurrent servers, where a server program listens at an assigned TCP port, and forks a child process to handle each incoming request. These servers use some of the V0 client code (the IK library) to perform many of their communication functions.

The WWW Gateway

In the summer of 1995, the first version of a gateway between the V0 data centers and the ubiquitous World-Wide Web (WWW) was released. This gateway acts as a mapping layer which converts input from Web pages to appropriately-formatted ODL query messages, which are then sent to the required DAACs. The gateway appears to the DAAC servers as just another client. The results from the DAACs are then converted into HTML format for display by the Web browser. In order to facilitate connections to multiple DAACs simultaneously, the Web gateway developers utilized code from an earlier gateway system which performed a similar function. This gateway code extracted the V0 IMS client poller as well as much of the IK library, and modified them for use in the gateway environment.

The common threads

The client, server and gateways each require the ability to format and transmit ODL messages via TCP/IP sockets. To reduce duplication of effort, the communication code was extracted from the client and distributed to the DAACs as a C-language library (the IK library). The name derives from the IK_ prefix on the C source files. This code has undergone many revisions since it was first released, and is in use at all data centers.

The polling code is used by the clients and the Web and CIESIN gateways. This code manages the simultaneous connections to multiple data centers. For the gateways, the polling and IK code act in concert to appear as clients to V0 servers. Other gateways, such the Release A gateway, use the IK code for communication, but do not use the poller. This approach is necessary since that gateway is one-way: the Release A gateway maps Release A server protocols to Version 0 protocols, and therefore the gateway appears as a Version 0 server, not a client.

The problems

Functionality

The IK library acts as a “wrapper” around the UNIX system calls necessary for TCP/IP communication. However, due to earlier design approaches, the IK library also manages much of the formatting and ingesting of ODL messages for query and results. This approach has led to an entanglement of functionality between message formatting and message transmission/reception, with associated difficulties in maintenance. In essence, the IK library maintains significant knowledge about the type and format of the messages being transmitted. Each time a new message type is added to the V0 client/server protocol, the IK library must be carefully examined to ensure that the new message type does not cause problems with existing code or message types. Additionally, the initial design of the code was influenced by the early requirement to support the VMS operating system. Legacy code developed to support VMS is no longer required, so this code may be removed.

Performance

One of the legacies of the existing polling and IK library code is inefficiency. In the early stages of the project, efficiency was deemed less critical than functionality, due to the rapid-prototyping nature of the effort. The state machine approach allowed rapid development of individual modules, at the expense of sacrificing some runtime processing efficiency. Some problems with the socket routines had been addressed earlier in the history of the project, but inefficiencies in the implementation of the polling code persist. Under some situations, problems at a single data center can prevent the user from seeing any screen updates for a significant amount of time, leading to highly negative perceptions of system performance and utility.

Portability and maintainability

In its current form, the IK library is moderately portable among current commercial versions of the UNIX operating system. An effort was made by the development team to improve the portability of the IK library by distributing it with a configuration script generated by the GNU autoconf utility. This script detects and accounts for some system-dependent features, but porting the IK library can still be a very labor-intensive effort, and must be done by an experienced C programmer. The polling code (as extracted from the V0 client) is currently portable only on a case-by-case basis. It is hand-crafted for each port, and no automation of porting for this code has been performed.

The objectives

The IK library

The IK library is the primary thread which connects the V0 IMS client, servers and gateways, and must be available on a wide variety of UNIX systems. This effort will concentrate on improving the run-time efficiency and stability of the IK library, and formalizing and automating the portability of the library source code.

The poller

The poller code will be rewritten to significantly improve its runtime efficiency, with an emphasis on improving the user perception of system responsiveness. The poller code will also be modified to improve its portability to other systems, so that it can more easily be used by the WWW gateway (and other) development teams. Similar changes will be performed, where needed, on the V0 client state machine code.

Requirements

Functional

The new code should preferably not require changes to the Version 0 client/server protocol. Any changes that are made in the protocol should maintain backward compatibility with existing clients and servers.

The code must support access to an increased number of data centers while maintaining reasonable performance. At a minimum, the system must support simultaneous access to 30 data centers while improving performance relative to the existing code.

The code must not cause abnormal results when a search is requested to more data centers than the currently allowable maximum number of connections. At a minimum, the code must indicate to the user that not all requested data centers will be immediately contacted. Data centers in excess of the limit would be accessed as client resources become available.

Data ingest for inventory results messages must be performed in such a way that partial data sets are not visible to the interface.

Alternative approaches (e.g. multithreading) must be examined to determine potential for improvements in efficiency.

Performance

The changes must improve the user perception of the responsiveness of the system.

Overall system performance must not be adversely affected when exceptional conditions arise on individual connections.

The user interface (or other higher-level code) must be able to efficiently update its state in response to changes in communications status, and to continue to function effectively when the communication status is not changing.

The new code must significantly increase data throughput over current levels. In particular, the code should be rewritten to reduce the delays during the receipt and ingest stages of message processing.

Where possible and feasible (given other requirements), memory use by the code should be improved relative to existing code.

Portability and maintainability

The code must be “disentangled”, i.e. connections between software layers must be reduced and restructured so that the poller and the message passing software are independent. Specifically, it must be possible to replace the existing poller with a new poller without requiring changes to the lower-level modules.

The Application Program Interface (API) by which existing code communicates with the software should change as little as possible. If changes must be made in the API, they must be well-documented and justified. Where possible, a wrapper must be provided to map the existing API to the new API.

Documentation will be provided as follows:

A design document will be prepared which describes the overall system design in sufficient detail to allow independent implementation.

A programmer reference document will be prepared which details the implementation of the design, and provides a complete reference for the entire API (Application Programmer Interface).

All code not directly related to the objectives of managing connections and message transmission and receipt must be moved to other layers of software.

The communication code must not require modification when new message types are introduced.

The code must be modular enough that new message formats, e.g. PVL, Z39.50, may be substituted for ODL when desired, with a minimum of code changes.

The code must be easily and widely portable across a variety of UNIX versions.

AIX

AIX 3.2

HP/UX

HPUX 9.05

IRIX

5.3

6.2

Linux

Kernel level 1.2.x (x >= 13)

Solaris

1.x (“SunOS 4.1.x”)

2.4, 2.5 (“Solaris”)

	� PAGE �5�

1.7
