Using Non-Blocking connect() Calls and select() Multiplexing
The first steps in enhancing the V0 state machine and poller
Author: Eric Winter, Hughes STX
Date of last modification: Wednesday, November 06, 1996
Introduction
Purpose
This document describes the steps taken to modify the V0 IMS client software to use non-blocking connect() system calls and select() multiplexing to check for connection completion and data availability.
Who should read this document
This document should be read by any developer working on the V0 IMS code, as well as any other party interested in the use of non-blocking connect() calls and select() multiplexing to improve communication efficiency.
Overview
Problem Summary
The existing V0 IMS client code uses the connect() system call to initiate TCP/IP connections to servers at the data centers requested in a search. The current implementation uses a blocking connect() call with a 20-second timeout value. If the connection fails to complete in that time period, then a second attempt is made during the next state machine cycle, also with a 20-second timeout. A third attempt is made if needed, again with a 20-second timeout. In effect, the connection gets three “chances” to establish itself, with 20 seconds per attempt. If no connection is achieved after three attempts, the server is marked as “down”.
The problem lies in the blocking nature of the call. All other processing is delayed due to the requirement of waiting for the connect() call to return, causing up to a 20-second delay per attempt. In order to improve the speed and efficiency of the software, we have decided to use non-blocking connect() calls. These calls will return immediately, allowing other processing to proceed. The establishment of the TCP/IP connection then proceeds in the background. The socket will be checked later to determine if the connection has completed. This approach will allow the overlap of the connection delay with other processing, thus significantly improving the speed with which other operations can be performed.
Another problem lies in the way in which the select() system call is used in the client software to check for data availability on a connected socket. In the existing implementation, a call to select() is made for each individual connection, with a one-second timeout value. Therefore, each connection can contribute up to a one-second delay on each state machine cycle. To reduce this delay, all of the select() calls can be multiplexed into a single select() call, thus reducing the maximum delay to one second.
Notes on the existing connect() code
The existing code executes the connect() call in the function IK_Connect(). This function is in the file IK_Clnt.c, since it is used only on the client side of the V0 IMS client/server system. This function uses the alarm() system call to set up the 20-second timeout value for the connection attempt. In the new approach, these retries will not be needed, since a single “background timeout” value may be used. Therefore, the alarm() calls and supporting code will be deleted.
This function (IK_Connect()) takes two arguments - the IP address and port number of the server to connect to. This function creates the socket itself, each time it is called. In the new approach, the same socket must be used on subsequent connection checks, and therefore the socket creation code needs to be moved out of this function.
For the first attempt at this modification, do not make changes to the state machine or poller. Data that must be stored between invocations of the connection and check code should be stored in the CONNECTION_INFO structure, since this structure will already be in place and initialized when the connection is attempted.
Notes on the existing select() code
The existing code executes the select() call for a connection in the function IK_RxODL() in the file IK_Comn.c. This function issues the select() on the single descriptor for the current connection, with a one-second timeout value. Note that the current code uses non-blocking read() calls when the select() system call is available, presumably to simplify the code.
Possible approaches
Non-blocking connections
Creating the socket and starting the connection
In general, we must first create the socket descriptor using the socket() system call. Next, we need to mark the socket as non-blocking, using the ioctl() or fcntl() system call. Finally, we initiate the connection attempt using connect(). We will need to record the time at which the connection attempt is initiated, so we can check later to see if enough time has elapsed to warrant giving up on the non-blocking connection attempt. This time can be recorded in the CONNECTION_INFO structure.
The pseudocode for this sequence of events is shown below, with most error-handling code deleted:
StartConnection:
Create the socket.
Store the socket descriptor.
Make the socket non-blocking.
Set other socket options (lingering, etc.).
Record the current time as the start of the connection attempt.
Issue the non-blocking connect() call.

Note that the functions ioctl()is not part of the POSIX.1 standard, nor are the preprocessor constants used as command arguments. Therefore, the code which makes the socket non-blocking may actually be located in a separate file used to isolate non-POSIX.1 code, with a wrapper function around it, e.g. IK_MakeSocketNonblocking(). Note also that we will need to store a status flag to indicate if the connection is established, since the existence of a descriptor does not require it to be connected.
Note also that the chance of the connection completing during the small time consumed by the non-blocking connect() call is small. Therefore, this approach will not check to see if the connection completes on the actual call to connect(). The subsequent checks for connection completion should occur rapidly enough that little delay is noticed. It may be useful, however, to check the return value from the connect() call and log a notice that the connection actually completed.
At a later time, we must check the socket to see if the connection has completed. There are two ways to do this:
Issue another connect() call
Use the select() system call
Both of these options will be described in detail below.
Using another connect() call to check for connection completion
In this method, a subsequent call to connect() on a socket which already is establishing a connection will return (barring errors) one of two values. If connect() returns 0, the connection has completed. If connect() returns -1 and the global errno is EALREADY, then the connection attempt is still in progress. The code which checks the return value from the connect() call must check for these cases. The pseudocode for this procedure is shown below:
IsConnectionComplete:
Get the descriptor and destination address for the socket to check.
Call connect(), passing it the descriptor and server address.
Examine the return value from connect().
If return value is 0,
	the connection is complete,
	return YES.
Else if the return value is -1,
	then if the global errno is EALREADY,
		the connection is still underway,
		return NO.
	Otherwise,
		an error occurred,
		return NO.
Otherwise,
	something unexpected happened!
	Return NO.

Note that this approach requires the server address as well as the socket descriptor each time the connect() call is issued. However, this information is readily available from the existing CONNECTION_INFO structure. Additional error code processing is required for this approach as well.
Using the select() call to check for connection completion
In this method, the select() call is issued on the socket to check for write availability. When select() sets a flag indicating that the socket is ready for writing, then the connection has been established. The pseudocode for this procedure is shown below:
IsConnectionComplete:
Get the descriptor for the socket to check.
Call select(), passing it the descriptor and a writability-check flag.
Examine the return value from select().
If return value is 0,
	the connection is not complete,
	return NO.
Else if the return value is 1,
	then the connection is complete.
	Check the returned descriptor mask to be sure.
	Return YES.
Otherwise,
	something unexpected happened!
	Return NO.

On the whole, this approach is simpler than the connect() approach, since errno processing is not required. Additionally, this approach is conceptually “cleaner”, since the functions used are performing the exact task required. In the other approach, we would have to rely on a “side effect” - the setting of errno - to get the information we need. Note that like ioctl(), select() is not a POSIX.1-standard function, and therefore should be encapsulated in a wrapper function.
Which approach should be used?
Use the select() approach. The resulting code will be smaller, cleaner, and easier to understand and maintain. Additionally, use of select() will allow the multiplexing of connect() completion monitoring for multiple pending connections, providing further performance benefits. Further efficiency will be gained by multiplexing the connect-complete select() calls with the data-available select() calls for established connections. The latter approach will lead to somewhat more complex code, but will further reduce the delays caused by pending connections.
Multiplexing select() calls to check for data availability
In order to perform the multiplexing, we must de-couple the code which performs the check for data availability from the code which reads the data from the socket. Currently, the code for each of these operations is in IK_RxODL().
Detailed pseudocode
Creating the socket
Summary: This code is responsible for creating the socket. Checks are made to ensure that the socket descriptor satisfies the restrictions on open files and is accessible to the select() system call. This code takes no input arguments, and a single output argument (the socket descriptor). The return value of the function is TRUE if the socket was created and initialized nominally, and FALSE otherwise.
CreateSelectableSocket:
Validate inputs.
If any input invalid, return FALSE.
Call socket() system call.
Examine descriptor returned from socket() call.
If descriptor is non-negative,
then if descriptor is within the limit on selectable descriptors,
	save the descriptor,
	return TRUE.
Otherwise,
	close the descriptor,
	return FALSE.
Otherwise,
	return FALSE.

Making the socket non-blocking
Summary: This code is responsible for converting the socket from blocking to non-blocking status. This code takes a single argument - the descriptor for the socket to set options for. The code returns a Boolean value - TRUE if non-blocking I/O was set properly, and FALSE otherwise. Note that the existing code (IK_setsockopt() in IK_Comn.c) uses the ioctl() system call to make the socket non-blocking. Note also that the socket must be converted back to blocking I/O once the connection is established, so that blocking read() calls can be used. This will require subsequent calls to convert the socket from non-blocking to blocking status once the connection is established. This approach should cause minimal delay in the software, since the select() call will indicate which sockets have available data prior to any calls to read(), thus avoiding any substantial blocking delays. This code will use the fcntl() system call to set the options, since it is part of the POSIX.1 standard.
MakeSocketNonblocking:
Validate inputs.
If any input invalid, return FALSE.
Fetch current socket options.
If error occurred, return FALSE.
Turn on non-blocking I/O flag in options.
Set all socket options (including new non-blocking I/O flag).
If error occurred, return FALSE.
Return TRUE.

Initiating the connection
Summary: This code is responsible for issuing the connect() call to begin the connection. This function takes three arguments:
The descriptor for the socket to use for the connection attempt
The IPA (IP Address) or FQDN (Fully Qualified Domain Name) of the server host
The port number on the server host
This code returns TRUE if the connection was initiated, and FALSE otherwise. Note that if the non-blocking connect() call does return 0, then the connection was established (this will be a rare event). In this case, we will note the event, but take no significant action on it; the next invocation of the code which checks for connection establishment will notice that the connection is complete.
BeginBackgroundConnection:
Validate inputs.
If any input invalid, return FALSE.
Map the FQDN or IPA to a hostent data structure.
If an error occurred, return FALSE.
Initialize the server address structure with the address and port data.
Call connect().
If connect() returns -1,
	examine errno.
	If errno is EINPROGRESS,
		the connection is establishing in the background.
		Return TRUE.
	Otherwise,
		an error occurred.
		Return FALSE.
Else if connect() returns 0,
	the connection is established (this should be rare).
	Return TRUE.
Otherwise,
	something unexpected happened!
	Return FALSE.

Checking for connection completion (and timeouts) and data availability
Summary: This code will use the select() call to determine if one or more pending connections have completed. After the connection check, the connection list will be examined for connections which have failed to complete for a timeout period; those connections will be marked as dead.
A write-check is used to check for connection completion, and a read-check is used to check for available data. When select() indicates that a socket is writable, the connection has been established. When select() indicates that a socket is readable, then data is available on that socket.
This code needs to operate “outside” of an individual connection, since it will be examining the status of several connections simultaneously. From the point of view of the State Machine, the flags which indicate connection status and data availability can be “volatile”. That is, the code need not know where or how they are set. The State Machine only needs to know that if the flag indicating an established connection is set, then the connection associated with that flag can progress to the SEARCH state. If the flag indicating data availability is set, the connection associated with that flag can attempt to read data.
When the State Machine code for a given connection executes, it will check the status flags for the connection to determine whether or not the connection is established, dead, or has data available. Existing code for changing states and reading data will be used for now.
Note - for this discussion, “dead” means the background connection has timed out. Note also that we need to keep track of the maximum descriptor, so we can tell select() how many descriptors to check.
MonitorSockets:
Validate inputs.
If any inputs are invalid, return FALSE.
Clear read and write socket descriptor masks.
Initialize max descriptor to -1.
For each connection,
	If the descriptor exists and the connection is not dead,
		if the connection is not yet established,
			set a bit in the write check flag for this connection,
		else,
			set a bit in the read check flag for this connection.
		If this descriptor is greater than the current maximum,
			set the current maximum to this descriptor value.
If any descriptors are to be checked,
	initialize the select() timeout value to 1 second.
	Issue the select() call.
	Examine the results.
	If an error occurred,
		log an error message and continue.
	Else if the timeout occurred,
		continue.
	Else if one or more descriptors changed state,
		for each connection,
			if the socket exists and the connection is not dead,
				if the connection is not established,
				if the writable bit for this socket is set,
						set the connection established flag.
				Else,
					if the readable bit for this socket is set,
						set the data available flag.
	For each connection,
		if the connection is established or dead,
			continue.
		Fetch the current time.
		Calculate the time elapsed since start of connection attempt.
		If elapsed time greater than timeout value,
			set the connection dead flag.

Setting socket options for message transmission and reception on established connections
Summary: This code is responsible for setting the required options on the socket for the reading and writing of data once the connection is established. The required options are:
Blocking I/O
Socket lingering (ensures buffered data is transmitted when the socket is closed or shut down)
Socket “keep-alive” (ensures connections are not dropped by TCP/IP during long waits)
This code takes a single argument - the descriptor for the socket to set options for. The code returns a Boolean value - TRUE if all options were set properly, and FALSE otherwise. Note that the existing code (IK_setsockopt() in IK_Comn.c) uses the ioctl() system call to make the socket non-blocking, and uses setsockopt() to activate socket lingering and keep-alive. The new code will use the fcntl() system call to revert the socket to blocking status. Note also that the existing socket option code uses the signal() function to set up signal handlers. However, the existing code is incorrect in that it repeatedly reinstalls the handler for each socket, and assumes no other code uses the signals. To be safe (and portable), the code for installing signal handlers will be moved to a separate function. In practice, a separate function will be created to set and clear each socket option.
MakeSocketBlocking:
Validate inputs.
If any input invalid, return FALSE.
Fetch current socket options.
If error occurred, return FALSE.
Turn off non-blocking I/O flag in options.
Set all socket options (including new blocking I/O flag).
If error occurred, return FALSE.
Return TRUE.

ActivateSocketLingering:
Validate inputs.
If any input invalid, return FALSE.
Set activation flag in linger structure.
Call setsockopt() to turn on lingering.
If error occurred, return FALSE.
Return TRUE.

DeactivateSocketLingering:
Validate inputs.
If any input invalid, return FALSE.
Clear activation flag in linger structure.
Call setsockopt() to turn off lingering.
If error occurred, return FALSE.
Return TRUE.

ActivateSocketKeepAlive:
Validate inputs.
If any input invalid, return FALSE.
Set keep-alive flag.
Call setsockopt() to turn on keep-alive.
If error occurred, return FALSE.
Return TRUE.

DeactivateSocketKeepAlive:
Validate inputs.
If any input invalid, return FALSE.
Clear keep-alive flag.
Call setsockopt() to turn off keep-alive.
If error occurred, return FALSE.
Return TRUE.

Implementation Outline
General points
The new code must work with the existing State Machine interface. That is, the user interface code which calls IK_CauseStateTransition() must not be changed. Therefore, all of these changes must be at or below the call to IK_CauseStateTransition(). Additionally, the function which initiates each transaction, IK_CreateSearchConnections(), must be retained. Finally, the code must require minimal changes when the Task Manager is implemented.
The CONNECTION_INFO structure
The following changes must be made to the CONNECTION_INFO structure:
Add a data member to store the connection start time.
Add a data member to store the “connection established” flag.
Add a data member to store the “connection dead” flag.
Add a data member to store the “data available” flag.
Each of these data members is of fixed size, so no dynamic allocation is needed for them.
Files/functions affected:
IK_Nm.h - Modify definition of CONNECTION_INFO structure
Preparing to start a search
A search is initiated by calling IK_CreateSearchConnections() in the file IK_Nmint.c. This function initializes the CONNECTION_INFO structure for each connection. The existing code in this function will be retained, but several additions must be made to properly initialize the new data members in the CONNECTION_INFO structure.
The following changes must be made to this function:
Add code to initialize the connection start time to 0.
Add code to initialize the “connection established” flag to “false”.
Add code to initialize the “connection dead” flag to “false”.
Add code to initialize the “data available” flag to “false”.
Files/functions affected:
IK_Nmint.c/IK_CreateSearchConnections()
Opening a connection
This state is handled by the state action function IK_OpenConnection(), which in turn calls IK_Connect(). The latter function will be modified to use the new sequence of events described above for the creation and initialization of a socket, as well as the initiation of the non-blocking connection (if none is underway), or checking for completion of a pending connection (if such is underway).
IK_OpenConnection() must be modified in several ways. First, a check must be made to see if this connection already has a socket created for it, by examining the value of the socket_id member of the CONNECTION_INFO structure. If valid (i.e. greater than 0), the connection already has a socket. In other words, IK_Connect() has already been called at least once for this connection.
If the socket exists, check the value of the “connection established” flag, which is controlled by the results of the select() call made earlier. If this flag is set, then IK_OpenConnection() should return the event IK_CONNECT_OPEN; however, the connection must be converted to blocking I/O first (and other socket options must be set). If the socket exists and the “connection established” flag is not set, check the value of the “connection dead” flag. If set, the background connection has timed out (as determined by the “dead connection” harvesting code following the select() call in IK_CauseStateTransition()); return the event code IK_ARCHIVE_DOWN. If not set, the connection is still underway; return the event IK_CONNECT_FAILED. Note that having both the “connection established” and “connection dead” flags set simultaneously is an impossible condition at this point, and should be checked for with an assert() macro.
If the socket does not exist, create it and set the required options for the background connection.
Now issue the connect() call for this socket. Assuming connect() returns -1, check for the error EINPROGRESS in the error global variable errno. If this error is detected, the returned event should be IK_CONNECT_FAILED, as it currently is when IK_Connect() sets IK_ImsErrno to IK_ECONNREFUSED. For any other error, close the socket and return the IK_CLIENTSYS_ERROR event.
IK_Connect() will require significant modification. First and most importantly, the function prototype will change. This function will now return a IK_BOOLEAN value, where a value of IK_TRUE indicates the connection has been established, and IK_FALSE indicates no connection. The function will be modified to take an additional argument - a pointer to a variable to store the socket descriptor. The current arguments for the destination host IPA and port number will be retained.
The connection timeout alarm must be removed. The background connection process eliminates the need for this code.
The code which sets up the destination host data structures will be retained unchanged.
Next, the new functions which create and initialize the socket must be invoked. The connect() call is then made. When the background connection attempt returns, this function should set the global IK_ImsErrno to IK_EINPROGRESS, assuming that is the value taken by the global errno when the connect() call returns -1, which it should do under normal conditions. If errno is not this value, then perform the current error processing.
Files/functions affected:
IK_Nmfn.c/IK_OpenConnection()
IK_Clnt.c/IK_Connect()
IK_Network.h (for prototypes)
IK_Socket.[ch] (for new socket functions)
Updating the connections
Connections are updated by calling IK_CauseStateTransition(). This function invokes the state action function for non-terminated connections one at a time. This function will now be modified to invoke the new code described in the previous section (select() multiplexing and processing of the results) prior to the invocation of any state action functions. The existing state action functions perform all of the work for opening connections, sending and receiving data, and closing the connection.
This code must perform the multiplexing of select() calls prior to calling any of the state action functions. The results of the select() call will be used to set the “connection established” and “data available” flags. The values of these flags will be examined in the appropriate state action functions to determine whether to advance from the OPEN to the SEARCH state (for the “connection established” flag) or to try and read data (for the “data available” flag).
After the select() call is made, the connection list will be examined to find connections which should be marked as “dead”, as described above. This is done by fetching the current time and, for each connection still not established, calculating the elapsed time since the initiation of the connection attempt. If the elapsed time is greater than the timeout value (one minute for now), mark the connection as dead by setting the flag bool_connectionDead to IK_FALSE in the CONNECTION_INFO structure for this connection.
Now that all of the flags have been updated, the actual state action functions may be invoked normally.
The changes to the state action function IK_OpenConnection() were described above.
The state action function IK_ListenTree() calls IK_RxODL(), which is the function which currently issues the select() call. Therefore, IK_RxODL() (in IK_Comn.c) must be modified to delete use of the select() call. Instead, IK_ListenTree() should check the value of the flag bool_dataAvailable, and only call IK_RxODL() if the latter is set to IK_TRUE. The results of the call to IK_RxODL() should be processed in the current manner.
Files/functions affected:
IK_Nmint.c/IK_CauseStateTransition()
IK_Nmfn.c/IK_ListenTree()
IK_Comn.c/IK_RxODL()
IK_Socket.[ch] (for new socket functions)
Summary of work to be done
The following files and functions will be modified:
IK_Network.h: IK_Connect(), IK_RxODL() prototypes
IK_Nm.h: CONNECTION_INFO structure definition
IK_Nmint.c: IK_CreateSearchConnections(), IK_CauseStateTransition()
IK_Nmfn.c: IK_OpenConnection(), IK_ListenTree()
IK_Clnt.c: IK_Connect()
IK_Comn.c: IK_RxODL()
IK_Socket.[ch]: New functions for socket creation and setting options
	� PAGE �12�

1.0	Eric winter, Hughes STX	� DATE �11/06/96� � TIME �10:03 AM�

