
8

How are search connections created?

A step-by-step description

Author: Eric Winter, Hughes STX

Date of last modification: 07/14/97 3:23 PM
Introduction

Purpose

This document presents a detailed description of how search connections are created in the V0 IMS client, along with analysis of problems and possible improvements.

Who should read this document

This document should be read by any developer working on the V0 IMS networking code, as well as any other party interested in how the V0 networking code works on the client side.

Overview

How does it start?

Search connections must be created whenever a user begins a search transaction. In this context, a search connection is a TCP/IP socket connection to a single DAAC server. All of the connections for a given search are created when the transaction begins. Before the connections are created, the CONNECTION_INFO structures for the connections must be created. These structures are created and initialized with a call to IK_CreateSearchConnections(). This function is usually called by a user interface callback routine which processes the search criteria and prepares to execute the search.

A single connection is opened in a two-state sequence. The first state is IK_XXX_BEGIN, where XXX is the abbreviation for the current search type. The corresponding state action function is IK_OpenConnection. This function creates the socket, sets the appropriate socket characteristics, and initiates a background connection to the server. In the next state (IK_XXX_CONNECT), the connection status is examined by the state action function IK_EstablishConnection(). This function verifies that the correct connection has been completed, and sets the appropriate socket characteristics to be used for the rest of the transaction. Once this function is complete, the transaction proceeds normally.

Note that this sequence of events differs significantly from the approach used in the original IK software. The original approach utilized a blocking connect() call. While valid, this approach frequently resulted in unacceptably long delays in user interface updates, and had the unfortunate side effect of allowing a single slow connection to delay processing of all others. The current approach eliminates this problem by performing the connect() calls in the background.

Step by step

What happens during a nominal call to IK_CreateSearchConnections()?

· The function takes one argument - an ODL tree containing the parameters for the current search.

· Verify that a valid, non-NULL ODL tree pointer has been supplied. After checking for a non-NULL pointer, call IK_IdentifyTree() to ensure that the tree type is IK_SEARCH, then call IK_IdentifySearchTree() to ensure that a valid search type has been specified. Failure of any of these conditions constitutes a fatal error; the program will abort via the assert() macro. Therefore, this function requires that the user interface supply a valid search tree.
· Clear the IK_ImsErrno global error code.

· If the Task Manager for this transaction has not been created, create it with a call to IK_TaskManager_New(). Note that in practice, the Task Manager is always created at this point, since it is currently deleted at the end of every transaction. If the Task Manager cannot be created, immediately return -1.

· Clear each element of the temporary working array (arc_arr[]) which is used to store server information.

· Clear the count of data centers to search.

· Process each DATA_CENTER group in the search tree as follows:

· NOTE - this code assumes that the DATA_CENTER groups are contiguous in the search tree. After the first DATA_CENTER group, they are found by calling NextGroup() until the group name is no longer DATA_CENTER. This is not a safe approach. A better approach would be to simply loop through the tree for all groups with the DATA_CENTER name.

· Allocate space for an entry in the working array for this data center. Note that this approach performs a memory allocation of a fixed-size data structure on each pass through this loop. Note also that the definition (near the top of the file) of the ArchiveInfo data structure uses IK_MAXBUFLEN as the size of each of the three arrays the structure contains (for the DAAC name, IP address and port number). This value is currently 300, which is about 60 times higher than is needed for these arrays. They should be redimensioned to use much smaller values. It may also be useful to restructure this code to eliminate the need for the temporary array (and thus the ArchiveInfo data structure).

· Find the DATA_CENTER_ID parameter in the current DATA_CENTER group, and copy the first value to the local array of data center information. If the DATA_CENTER_ID parameter is not found, or it has no value, set IK_ImsErrno to IK_EBAD_ODLTREE, then terminate the function. The DATA_CENTER_ID parameter contains the name of the DAAC to contact.

· Find the INTERNET parameter in the current DATA_CENTER group, and copy the first value to the local array of data center information. If the INTERNET parameter is not found, or it has no value, set IK_ImsErrno to IK_EBAD_ODLTREE, then terminate the function. The INTERNET parameter contains the FQDN (Fully Qualified Domain Name) of the server host machine at the DAAC.

· Find the PORT parameter in the current DATA_CENTER group, and copy the first value to the local array of data center information. If the PORT parameter is not found, or it has no value, set IK_ImsErrno to IK_EBAD_ODLTREE, then terminate the function. The PORT parameter contains the TCP port number for the server process to contact.

· Increment the count of searched data centers.

· Get a pointer to the next group using NextGroup().

· If the current search is not a GCMD search (i.e. a direct query to the GCMD), verify that at least one data center was specified. If not, abort the function. If so, remove all DATA_CENTER groups from the search tree, so that they are not transmitted to the target DAACs.

· If the current search is a GCMD search, as evidenced by the IK_GCMD_SEARCH search type returned from IK_IdentifySearchTree(), set the searched data center count to 1 (there is only one GCMD server). Then…

· Allocate a local structure to hold information on the GCMD “DAAC”. NOTE - If there is a DATA_CENTER group in the ODL tree for a GCMD search, this line will leak memory, since the earlier code in this function already allocated an ArchiveInfo structure for this connection.
· Find the DATA_CENTER group for the GCMD in the search tree, i.e. the first DATA_CENTER group.

· Find and copy the DATA_CENTER_ID parameter value into the ArchiveInfo for this search.

· Zero the remaining fields (IPA and port number) of the ArchiveInfo structure. This is done ostensibly to prevent the Network Manager from crashing, although I am not sure how it accomplishes this. This code should probably be overhauled to remove this chicanery.
· Create a message ID string for this search, and embed it in the first child of the root aggregate of the search tree. The ID is created with a call to IK_CreateMessageID(). Note that the same message ID is shared between all connections in a single search. The ID is embedded with a call to IK_EmbeddMessageID(). It really should be renamed to something like "transaction ID", since it is used to identify a specific search, not a specific message. Note that the program continues if the message ID cannot be created!
· Check to see if the sum of the current number of connections, plus the number of connections about to be opened, is less than the maximum allowed (NARCHIVES). If NARCHIVES is exceeded, terminate this function. This code should be deleted, since the code does not support multiple simultaneous searches, and a pre-existing search is the only way in which the number of existing searches could be positive at this point.
· Make a local copy of the search tree, in case the UI trashes it. This code should probably be deleted.
· Now create a CONNECTION_INFO structure for each data center in the search. Start using the next free element of the Conn_array array. This code should be changed, since the next free element is always 0. The software only allows one search at a time.
· Allocate and clear a CONNECTION_INFO structure.

· Clear each entry in the tree array for this structure. This is superfluous - the clear after allocation already did this. Note that this array is statically-sized to IK_NUM_ARGCODES elements, where IK_NUM_ARGCODES is, in effect, the number of message types. It should be renamed as such.
· Set the appropriate elements of the ODL tree array to point to the global abort, quit and ack trees, and the local copy of the search tree. Clear the IK_MDDIF entry (for the 3rd time!); this latter line should be removed.
· Perform search-type-specific processing as follows:

· Inventory search (IK_INV_SEARCH)

· Call IK_InvSearchIngest() to ingest the search tree for later use by the UI. The ODL tree is just written to a file in the user's gaea_tmp directory, using the message ID as the filename. However, I am not sure it is ever used. This code may be a candidate for deletion. It would ostensibly be read by the function IC_ReadSearchTree(), but that function is never called in the code, and should also be deleted.
· Initialize the connection state to IK_INVSRCH_BEGIN.

· Initialize the connection event to IK_CONNECT_IN_PROGRESS.

· Initialize the state action function pointer to IK_invsrch_func, the array of inventory search state action function pointers.

· Initialize the state table pointer to point to the first element (row) of the inventory search state table. This code should be changed to refer to the row for the first state (IK_INVSRCH_BEGIN), for readability.
· Initialize array of valid state codes for this search type.

· Directory search (IK_MSD_SEARCH)

· Call IC_ResetDatasetStatus(). What does this do? This is an IC-layer function called from the IK layer! This must be changed!
· Initialize the connection state to IK_MD_BEGIN.

· Initialize the connection event to IK_CONNECT_IN_PROGRESS.

· Initialize the state action function pointer to IK_mdsrch_func, the array of directory search state action function pointers.

· Initialize the state table pointer to point to the first element (row) of the directory search state table. This code should be changed to refer to the row for the first state (IK_MD_BEGIN), for readability.
· Initialize array of valid state codes for this search type.

· GCMD search (IK_GCMD_SEARCH)

· Set the IK_MDDIF tree pointer to point to the search tree passed into this function. Why is this done here? The pointer is already pointing to a copy of the search tree created earlier in this function. Is this memory stranded? I think so.
· Call IC_ResetDatasetStatus(). What does this do? This is an IC-layer function called from the IK layer! This must be changed!
· Initialize the connection state to IK_GCMD_GCMDCOMMN.

· Initialize the connection event to IK_GCMD_AMBIGUOUS.

· Initialize the state action function pointer to IK_gcmdsrch_func.

· Initialize the state table pointer to point to the first element (row) of the GCMD search state table. This code should be changed to refer to the row for the first state (IK_GCMD_GCMDCOMMN), for readability.
· Initialize array of valid state codes for this search type.

· Integrated browse search (IK_INTBR_SEARCH)

· Initialize the connection state to IK_INTBROWSE_BEGIN.

· Initialize the connection event to IK_CONNECT_IN_PROGRESS.

· Initialize the state action function pointer to IK_intbrsrch_func.

· Initialize the state table pointer to point to the first element (row) of the integrated browse search state table. This code should be changed to refer to the row for the first state (IK_INTBROWSE_BEGIN), for readability.
· Initialize array of valid state codes for this search type.

· IK_FTPBR_SEARCH
· Initialize the connection state to IK_FTPB_BEGIN.

· Initialize the connection event to IK_CONNECT_IN_PROGRESS.

· Initialize the state action function pointer to IK_ftpbsrch_func.

· Initialize the state table pointer to point to the first element (row) of the FTP browse search state table. This code should be changed to refer to the row for the first state (IK_FTPB_BEGIN), for readability.
· Initialize array of valid state codes for this search type.

· IK_PR_SEARCH
· Initialize the connection state to IK_PRES_BEGIN.

· Initialize the connection event to IK_CONNECT_IN_PROGRESS.

· Initialize the state action function pointer to IK_prsrch_func.

· Initialize the state table pointer to point to the first element (row) of the product request search state table. This code should be changed to refer to the row for the first state (IK_PRES_BEGIN), for readability.
· Initialize array of valid state codes for this search type.

· default
· Invalid search type. Log an error message and abort this function.

· Regardless of search type, copy the search type code, archive name, server IP address, port number, and message ID to the CONNECTION_INFO structure.

· Initialize the socket number and connection retry counter in the CONNECTION_INFO structure.

· Log a message on connecting to this archive.

· Initialize the remainder of the CONNECTION_INFO structure.

· Submit this connection to the Task Manager for management, by calling IK_TaskManager_ManagerConnection().

· Initialize the "last executed task" in the Task Manager to refer to the last added connection. This is done to ensure that when the Task Manager begins operation, it will start with the first connection that was submitted for management.

· Log a startup message.

· Perform termination cleanup. This will require changes if code above is deleted.
· Add the number of DAACs to contact to the connection count.

· If no error occurred, return the number of connections. Otherwise, return the error code IK_RET_ABNORMAL.

Notes

Basically, all this function does is set up the CONNECTION_INFO structures so they can be used when the actual connection process begins.

The arc_array array seems to be just a holding pen for DAAC information during the pass through the search tree. Information here is then copied out to the CONNECTION_INFO structures. Would it be more efficient to copy directly from the ODL tree to the CONNECTION_INFO structure? Yes.

This code seems to assume that more than one search can be going at once, since some of the arrays are indexed relative to IK_Num_Connections. Why? Only one search at a time is allowed, and therefore IK_Num_Connections should always be zero when a search begins.

Note that there is no check in the current code to see if more DAACs are requested than there are slots available.

The function IC_ClearDatasetStatus() is in IC_ClrDset.c. All it does is loop through each currently known data set (using IK_GetDataset()) and mark it as not visible. If this causes a change in the data set marks, the new data set is written to disk with IK_PutDataset(). This is the only function in this file. The prototype is in IK_Dataset.h. It is only called from IK_Nmint.c and IK_ResInv.c. Rename this file to IK_ClrDset.c, and rename the function to IK_ClearDatasetStatus().

What happens during a nominal call to IK_OpenConnection()?

This state action function is called whenever a connection is in the OPEN state for its search type. Like all state action functions, its arguments are a pointer to the CONNECTION_INFO structure for the connection, and the argument code (the index into the tree array for the ODL tree for the search).

· Immediately call IK_Connect(), passing it the IPA and port number for the server to connect to. Assign the return value to the socket_id of the CONNECTION_INFO structure, since the return value should be the socket descriptor for the connection.

· If the socket descriptor is bad (IK_RET_ABNORMAL), something went wrong during the connection attempt. Examine the value of the global error code, IK_ImsErrno:

· If IK_ECONNREFUSED, the server was to busy to accept the connection (or something similar). If the connection retry counter is less than the maximum value, increment the counter and return the IK_CONNECT_FAILED event. If the connection retry counter has reached its limit, return the IK_ARCHIVE_DOWN event.

· If IK_EINVAL, IK_ENOBUFS, IK_EHOSTDOWN, clear the connection retry counter and return the IK_ARCHIVE_DOWN event.

· For anything else, clear the connection retry counter, set the connection status code to NM_CLIENT_ERROPEN, and return the IK_CLIENTSYS_ERROR event.

· Regardless of the error, clear the global error codes.

· If the socket descriptor is valid, the connection attempt succeeded. Clear the connection retry counter, and return the IK_CONNECT_OPEN event.

· If the connection has been established, set the connection status to NM_NOERR; otherwise, set it to NM_NOSRVR_CONN.

· Return the specified event code to the caller.

Notes

So it appears that IK_OpenConnection() can return the following events: IK_CONNECT_OPEN, IK_CONNECT_FAILED, IK_ARCHIVE_DOWN, or IK_CLIENTSYS_ERROR. Most of the search open states go to state XXX_TERMINATE when IK_OpenConnection() returns the event IK_ARCHIVE_DOWN, IK_CLIENT_CRASH, IK_CLIENTSYS_ERROR, or IK_ABORT_SEARCH, go to XXX_SEARCH if the event is IK_CONNECT_OPEN, and remain in XXX_OPEN if the event is IK_CONNECT_FAILED. Note that in its current implementation, IK_OpenConnection() can never return IK_CLIENT_CRASH or IK_ABORT_SEARCH, so these should probably be changed to trigger moves to the ABNORMAL state.

I need to modify this code to account for the fact that a non-blocking connect() call will most likely not complete on its first attempt. How can this be done, since IK_Connect() gets only the IPA and port for the connection? I could add a member to the CONNECTION_INFO structure which records the time that IK_Connect() is called for the first time on any given connection attempt. When IK_Connect() returns from an incomplete connection attempt, it should return the code IK_RET_ABNORMAL, and set IK_ImsErrno to IK_EINPROGRESS. The error-handling code in the current function needs to add a case to handle the IK_EINPROGRESS code. This case would set the connection status to NM_NOSRVRV_CONN, and return the event IK_CONNECT_FAILED. Additionally, the connection retry counter would be eliminated, so the code for the IK_ECONNREFUSED case would be changed to simply set the return code to the IK_ARCHIVE_DOWN event.

What happens during a nominal call to IK_Connect()?

· Inputs (server address and port number) are validated. Note that the server address may be in the form of a dotted-decimal string or a FQDN.

· A socket address structure is initialized for use in the connection.

· A call to gethostbyname() is made to look up the “official” destination host information. If no information is returned, then the destination host is either unknown or non-existent. Either way, the error code is set to EINVAL, and the function returns -1. If the call is successful, the host address type (for now it is always AF_INET) is copied for use in the connection, along with the official 4-byte IPA and the desired port number (both in NBO).

· Now that we have the “official” connection information for the destination host, a socket is created to talk to it, using the socket() system call. If no socket can be created, an error code is set and the function returns -1.

· If the socket was created, a 20-second timeout is created for the connection attempt, using the alarm() system call.

· The connection is initiated by calling connect() on the socket descriptor created earlier, along with the destination host information.

· The alarm is cleared.

· The results of the connection attempt are examined. If the timeout alarm went off, the socket is closed, error flags and variables are set (EHOSTDOWN), and the function returns negative. If the alarm did not go off, but the connection attempt failed, error flags and variables are set (ECONNREFUSED), and the function returns negative. If the connection attempt succeeded, a call is made to IK_setsocketopt() to set the desired socket options.

· The socket descriptor is returned as the value of the function.

Now, what does IK_OpenConnection() do if IK_Connect() fails?

· If it works, the connection retry counter is reset, and the function returns IK_CONNECT_OPEN.

· If it failed due to ECONNREFUSED, i.e. connect() returns -1 and the alarm did not go off, the connection retry counter is incremented for the next attempt. Once the counter reaches a maximum value (MAX_COUNTER_VALUE = 3), the function returns IK_ARCHIVE_DOWN. If another retry is possible, the function returns IK_CONNECT_FAILED.

· Any other known error makes the function return IK_ARCHIVE_DOWN.

· Unknown errors mark the connection as NM_CLIENT_ERROPEN, and the function returns IK_CLIENTSYS_ERROR.

· The global error codes are then cleared.

· If the connection was opened, the connection error status is set to NM_NOERR. Otherwise, it is set to NM_NOSRVR_CONN. Note that this overrides the setting made in the “unknown error” case above.

· The function returns IK_CONNECT_OPEN if the connection was successfully opened, IK_CONNECT_FAILED if the retry timer reached its maximum value without a connection, IK_ARCHIVE_DOWN if a known error arose, or IK_CLIENTSYS_ERROR if an unknown error arose.

What is the effect of this approach? On each pass through this function (i.e. the first 3 passes through IK_CauseStateTransition()), there is a maximum delay of a little more than 20 seconds (the connection timeout). This function will be called up to three times for any given DAAC, leading to a maximum delay of 60 seconds, split over 3 20-second intervals.
Additionally, due to its direct manipulation of the connection data structures, IK_OpenConnection() should be considered as part of the state machine, and not part of the communications/message passing software. IK_Connect() and IK_setsockopt(), OTOH, are part of the communication/message passing software, since they do not “see” the connection data structures.

1.0
Eric winter, Hughes STX
10/24/96 10:49 AM

