[image: image1.wmf]IK

IC

IX

IJ

[image: image2.wmf]IK

IC

IX

IJ

Raytheon STX

The V0 IMS IK-Layer Networking Code

A programmer’s reference guide

The V0 IMS IK-Layer Networking Code

A programmer’s reference guide

Introduction

Purpose

The purpose of this document is to describe the structure, operation and use of the EOSDIS Version 0 Information Management System (IMS) IK-layer networking code. The IK-layer networking code is responsible for all network-related functions in the V0 IMS client and server programs. This document will deal only with client-related functions (which form the bulk of the IK-layer code). Server-related functions are discussed elsewhere
.

Target Audience

This document is primarily for use by developers, particularly developers performing maintenance on V0 IMS legacy code, or developers using the IK-layer networking code to create new gateways between the V0 IMS and other systems.

Background

Structure of the V0 IMS system

The V0 IMS client software was initially designed to support two types of user interfaces – a character-based user interface (the “ChUI”) and a graphical user interface (the “GUI”). Development of the ChUI client was terminated, and subsequent development was focused on the GUI. The design legacy of the requirement to support two distinct interfaces remained, as shown in Figure 1. A layered approach was used to isolate the specific user interface features from the underlying interface-independent code, including the networking code. Source and header files corresponding to the different layers were given prefixes associated with the corresponding layer as follows:

· IX - This layer contains code for the graphical user interface. The “X” refers to the X-Window System, which was used to develop the GUI.

· IJ - This layer contains code for the character user interface. The “J” refers to commercial tool Jam(, which was used to develop the ChUI.

· IC - This layer contains user-interface routines used by both user interfaces. The “C” refers to this “Common” aspect of the code.

· IK – This layer contains all code not directly associated with the user interface. The “K” refers to “Kernel”, since this layer deals with calls to the operating system kernel and library code. The IK layer deals with a variety of low-level functionality, including networking, data management, message parsing and assembly. This document will only discuss the network-related aspects of the IK layer.

· Figure 1: The V0 IMS client software is divided into several distinct functional layers.

In general, function call sequences only move downward between layers, or laterally within a layer. That is, IK functions could not invoke IC or IX/IJ functions, etc. Although this restriction was occasionally violated, the overall effect was to improve the modularity and maintainability of the code.

The original IK layer and its problems

The original IK layer code performed adequately for the prototype phase of the Version 0 IMS. However, as system usage grew (along with the number of DAACs), several limitations of the original code became obvious.

· Inadequate performance. As searches became more complex, system response time increased dramatically. The problem was particularly evident when a multiple-DAAC search was performed and one or more DAACs were off-line or slow in responding. In such cases, the problems with a single DAAC server would delay the handling of all of the other servers, including DAAC servers that were functioning properly. The net effect would be an unacceptable (at times excruciating) delay in updates to the user interface, and thus a negative user perception of system performance and usability. This problem arose for two reasons. First, the polling algorithm used to survey the state of each connection was poorly tuned. This defect was a result of the rapid development and implementation of the prototype code. Second, the UNIX system calls used to create and utilize TCP/IP socket connections were blocking calls, which forced a halt in client processing while network actions were performed.

· Robustness. The original IK code was operationally “fragile”. That is, it was prone to hang or crash the client when exceptional conditions arose. As for the poorly tuned polling algorithm, this problem was a result of the rapid development and implementation of the prototype code.

· Portability. The original IK code was intended to be easily portable between various UNIX systems. However, the subtle differences in the calling sequences, return values (and even existence) of many “standard” UNIX system calls and library functions made porting the IK layer code difficult at best. The V0 IMS development team expended considerable effort in ensuring the portability of the code across the range of target systems at the DAACs and on user desktops. However, unavoidable differences between different systems eventually overwhelmed the portability efforts, thus limiting their effectiveness.

· Maintainability. The original IK code was developed over the course of several years by several generations of programmers. Despite the best intentions of all involved, many different styles and conventions appeared within the code, along with infrequent or incorrect code comments, duplication (and subtle mutation) of code segments, hard-coded constants, and frequent “quick-and-dirty” patches. The accumulated effect of these efforts was a body of code that worked most of the time, but debugging and addition of new features was frequently a difficult endeavor.

The IK networking code overhaul project

To address these concerns, an effort was begun in late 1996 to overhaul the networking portions of the IK code. The objectives of this effort were as follows:

· Significantly improve the performance of the code (or at least have a significant positive effect on the user perception of the performance).

· Eliminate long-standing known bugs.

· Improve the portability of the code among various UNIX variants.

· Reorganize, restructure and document the networking code to ease the tasks of use and maintenance by future generations of programmers.

The remainder of this document will discuss the results of the overhaul effort. The structure of the new networking code will be examined, and the programming interfaces to the code discussed.

The structure of the IK layer networking code

A high-level overview

The IK networking code is used for two fundamentally different, but related, purposes. First, the code is used in the V0 IMS client and Web gateway software to initiate connections to servers, send and receive messages, and manage multiple connections simultaneously. Second, a subset of the IK networking code is used in the servers to ensure a common code base and compatibility with V0 IMS clients. The server-side code handles the acceptance of client connection requests, and message transmission and receipt.

Transactions and Connections

A transaction is the sequence of actions that are performed by the client when a V0 IMS user initiates a search or some other request for a service. Typical transactions are a directory search request, or a product order submission. Transactions frequently are executed with multiple servers simultaneously. To facilitate this approach, each transaction is composed of one or more connections, where a connection encapsulates the communication with a single server. A transaction includes the following steps:

1) Assemble transaction request messages from user input.

2) Determine servers to which each message is sent.

3) Create data structures to manage the connection to each server.

4) Open a connection to each server.

5) Transmit and receive messages to and from each server.

6) Shut down each connection when it is no longer required.

The State Machine

Each connection is implemented as a state machine. A state machine is a mechanism for the orderly description and progression of a connection. The state machine can be envisioned as a flow chart indicating all of the possible paths through a single connection. Transitions between states occur when events are received. An event is a particular occurrence of a predefined action required by the state machine, such as the opening of a network connection or the receipt of a message. In code, each state is represented by an integer value and a function. The integer value is a state code, and the function is a state action function. The state codes are used to represent the states in various internal data structures. The state action function performs the duties associated with an individual state. Events are implements as event codes – integers that specify a particular type of event. Each state action function returns an event code when it completes, so that the state machine can determine which state transition to execute.

The Task Manager, Tasks and Task Segments

Each transaction is managed by a task manager. A task manager is an object that encapsulates the code and data required for conducting the transaction at a high level. The task manager ensures that each connection receives appropriate time slices for processing. To accomplish this objective, the task manager creates a task for each connection. A task is a higher-level object used to manage the progression through the state machine for a single connection. A task object isolates the task manager code from the details of the state machine and other lower-level code, allowing the task manager to control execution of the connection in an abstract fashion.

Sequences of states within a state machine can frequently be grouped and executed as a unit, particularly when the state action functions for the states do not contain blocking calls or other time-consuming actions. Grouping is implemented using task segments. A task segment is simply a list of states that may be executed sequentially, as a unit. Other tasks are not active while a task segment is executing.

IK layer networking code reference guide

Source and header files

The IK layer networking code is distributed across several source and header files.

· IK_Clnt.c – This file contains client-specific networking functions.

· IK_Comn.c – This file contains networking functions that are common to the client and server.

· IK_Gcmd.[ch] – These files contain code which control communication with the Global Change Master Directory (GCMD).

· IK_Network.h – This file includes some standard header files, and provides constants and function prototypes used by both the client and server. Specifically, this file contains prototypes for all of the publicly available functions in IK_Clnt.c and IK_Serv.c.

· IK_Nm.h – This file contains the values of state and event codes, and the definition of the CONNECTION_INFO structure, which is the data structure used to store detailed information on an individual connection.

· IK_Nmfn.c – This file contains all of the state action functions. Many of these functions are simply wrappers that call functions in other files.

· IK_Nmint.c – This file contains the core routines of the networking code, including functions which create task managers, perform state transitions, monitor the status of connections, abort a search, and return various items of data about the transaction.

· IK_Nmpro.h – This file contains prototypes for functions defined in IK_Nmfn.c, IK_Nmint.c, and external declarations for variables used in the implementation of the state tables.

· IK_Nmsts.h – This file contains constants representing the status codes returned in the messages from individual servers.

· IK_Nmtbl.c – This file defines the state tables for each transaction type.

· IK_Socket.[ch] – These files contain code which perform low-level management of individual TCP/IP socket connections. These routines are for internal use, and should not be called by the programmer directly.

· IK_Task.[ch] – These files contain code which implement tasks. The programmer should not need to access these functions directly.

· IK_TaskManager.[ch] – These files contain code which implement task managers.The programmer should not need to access these functions directly.

Constants

The IK layer provides a variety of constants for use by client and server code, as well as constants for internal use. Constants are typically defined in header files using C preprocessor #define directives or, in more modern portions of the code, ANSI C const definitions. The constants can be divided into several classes, as described below. Only the major constants will be discussed; local “constants of convenience” will be omitted from this discussion.

Name: CLIENT_READ_ALARM_TIME, CLIENT_WRITE_ALARM_TIME, SERVER_READ_ALARM_TIME, SERVER_WRITE_ALARM_TIME
Defined in: IK_Comn.c
Description: These constants are used as the timeout values (in seconds) for socket read and write operations at the client and server ends of the connection. These values are used as arguments to the alarm() system call to ensure that blocking read() and write() calls on sockets do not block forever. The values are passed to these functions using the static variables SOCKET_WRITE_ALARM_TIME and SOCKET_READ_ALARM_TIME. These values are used only in this file, and should not require adjustment.

Data types

The IK layer defines many internal data types for its own use, as described below.

Name: CONNECTION_INFO
Defined in: IK_Nm.h
Description: This data structure is the primary repository of the data that describes an individual connection. The following structure members are defined:

· IK_SEARCH_TYPE search_type: The type of the current search on this connection.

· IK_State state: The state of the current connection.

· IK_EventCode event: The event code returned by the most recently executed state action function for this connection.

· IK_EventCode (**fnc_ptr)(struct connection_info *, int): A pointer to an array of state action functions appropriate for the current transaction type. These arrays are set up in the file IK_Nmtbl.c.

· int *arg_code_ptr: A pointer to an array of argument codes appropriate for the current transaction type. This array contains one element per state in the transaction, and the entries indicate which message type should be sent or received during the current state.

· int *st_array_ptr: A pointer to the state transition table for the current connection.

· char archive_name[35]: A string containing the name of the DAAC used as the target of the current connection.

· int socket_id: Descriptor for the TCP/IP socket used by the current connection.

· char internet_addr[35]: The IP address of the current server, expressed in dotted-decimal notation, e.g. 192.107.190.42, or as a FQDN (Fully Qualified Domain Name), e.g. . killians.gsfc.nasa.gov.

· int port_number: The TCP port number to use when opening a connection to the current server.

· int counter: The count of the number of attempts made to connect to the current server.

· AGGREGATE tree_array[IK_NUM_ARGCODES]: An array with elements for pointers to each possible message type. This array is used to hold ODL messages prior to transmittal or immediately after receipt.

· char message_id[IK_MESSAGE_ID_SZ]: The V0 IMS message ID which identifies the current transaction.

· char *image_buffer: An array of bytes used to hold the most recently received image fragment for this connection (by definition, an integrated browse request connection).

· unsigned long num_bytes_read: The number of bytes read during the most recent socket read operation on the current connection.

· unsigned long image_size: The byte size of the integrated browse image read on the current connection.

· unsigned long num_bytes_ingested: The number of bytes ingested so far on the current connection.

· IK_Gcmd **gcmd_ptr: Double pointer to a structure that holds the results of a GCMD query.

· int error_status: The current error status of the current connection.

· unsigned is_user_abort : 1: A bit field used as a flag that is set when the user manually aborts the current transaction.

· IK_BOOLEAN firstMessage: A flag that indicates whether or not the client has read a first message from the server. This flag is obsolete.

· time_t time_connectionStarted: The UNIX system time at which the current connection was established.

· IK_BOOLEAN bool_connectionEstablished: This flag is set when the connection to a server is established, i.e. the background connection attempt completes successfully.

· IK_BOOLEAN bool_connectionDead: This flag is set when the client determines that a connection has been lost, broken, or cannot be established.

· IK_BOOLEAN bool_dataAvailable: This flag is set when data is available for reading from a socket.

Name: IK_ArgCode
Defined in: IK_Nm.h
Description: These codes are used to specify the type of ODL message that will be sent or received. The valid codes are:

· IK_ABORT: Abort message

· IK_QUIT: Quit message

· IK_ACK: Acknowledgment message

· IK_SEARCH: Any type of search request message

· IK_INVRESULT: Inventory result message

· IK_PRODRESULT: Order result message

· IK_FTPBROWSE: FTP browse result message

· IK_INTBROWSE: Integrated browse result message

· IK_MDDIF: Directory search result message

· IK_XX: This value indicates an unknown message type.

· IK_BIMAGE: This value is obsolete.

· IK_STATS_REPORT: This value is obsolete.

Name: IK_DirectorySearchState
Defined in: IK_Nm.h
Description: These codes are used to specify the current state of a directory search connection. The valid codes are:

· IK_MD_BEGIN: Begin a background connection for a directory search .

· IK_MD_CONNECT: A background connection for a directory search has been established.

· IK_MD_SEARCH: Transmit a directory search message.

· IK_MD_ABORT: Transmit an abort message.

· IK_MD_QUIT: Transmit a quit message.

· IK_MD_LISTEN: Listen for an incoming message.

· IK_MD_GCMDCOMMN: Transmit query information to the GCMD server and retrieve results.

· IK_MD_INGEST: Ingest results from the GCMD.
· IK_MD_CLOSE: Close the connection.

· IK_MD_TERMINATE: The connection has been terminated.

Name: IK_EventCode
Defined in: IK_Nm.h
Description: This data type is an enumeration which sets out the valid event codes which can be returned by state action functions. There are currently 28 valid event codes, as listed below:

· IK_ARCHIVE_DOWN: The server is down or unreachable.

· IK_CLIENT_CRASH: The IMS client is going to crash. This event code is obsolete.

· IK_CLIENTSYS_ERROR: A run-time error in the IMS client occurred.

· IK_ABORT_SEARCH: The user aborted the transaction.

· IK_CONNECT_IN_PROGRESS: A background connection attempt was initiated.

· IK_CONNECT_OPEN: A connection was established.

· IK_CONNECT_FAILED: A connection attempt failed (usually by timing out).

· IK_CONNECT_CLOSED: A connection was closed.

· IK_TRANSMITTED: A message was transmitted.

· IK_GOT_NODATA: No message was received.

· IK_GOT_INVRESULT: An inventory result message was received.

· IK_GOT_PRODRESULT: An order result message was received.

· IK_GOT_FTPBROWSE: An FTP browse results message was received.

· IK_GOT_MDDIFS: A GCMD DIF message was received.

· IK_GOT_INTBROWSE: An integrated browse label message was received.

· IK_GOT_QUIT: A quit message was received.

· IK_GOT_ABORT: An abort message was received.

· IK_GOT_ACK: An acknowledgment message was received.

· IK_IMAGE_RECEIVED: A fragment of an image was received.

· IK_IMAGE_COMPLETE: An entire image has been ingested.

· IK_GCMD_SUCCESS: The GCMD request was successful.

· IK_GCMD_AMBIGUOUS: The GCMD request needs to be repeated.

· IK_INGESTINV_SUCCESS: Inventory results were successfully ingested.

· IK_INGESTFTPB_SUCCESS: FTP browse results were successfully ingested.

· IK_INGESTPR_SUCCESS: Order results were successfully ingested.

· IK_INGESTIMG_SUCCESS: An integrated browse image fragment was successfully ingested.

· IK_INGESTGCMD_SUCCESS: Results from the GCMD were successfully ingested.

· IK_TERMINATED: The transaction was terminated.

Name: IK_FTPBrowseState
Defined in: IK_Nm.h
Description: These codes are used to specify the current state of an integrated browse request connection. The valid codes are:

· IK_INTBROWSE_BEGIN: Begin a background connection for an integrated browse request.

· IK_INTBROWSE_CONNECT: A background connection for an integrated browse request has been established.

· IK_INTBROWSE_SEARCH: Transmit an integrated browse request message.

· IK_INTBROWSE_ABORT: Transmit an abort message.

· IK_INTBROWSE_QUIT: Transmit a quit message.

· IK_INTBROWSE_LISTEN: Listen for an incoming message.

· IK_INTBROWSE_READIMAGE: Read an integrated browse image fragment.

· IK_INTBROWSE_INGESTIMAGE: Ingest an integrated browse image fragment.
· IK_INTBROWSE_CLOSE: Close the connection.

· IK_INTBROWSE_TERMINATE: The connection has been terminated.

Name: IK_GCMDSearchState
Defined in: IK_Nm.h
Description: These codes are used to specify the current state of a GCMD search connection. A GCMD search is a direct query to the GCMD without a preceding directory search to a V0 DAAC server. The valid codes are:

· IK_GCMD_GCMDCOMMN: Transmit query information to the GCMD server and retrieve results.

· IK_GCMD_INGEST: Ingest results from the GCMD.
· IK_MD_TERMINATE: The connection has been terminated.

Name: IK_InventorySearchState
Defined in: IK_Nm.h
Description: These codes are used to specify the current state of an inventory search connection. The valid codes are:

· IK_INVSRCH_BEGIN: Begin a background connection for an inventory search.

· IK_INVSRCH_CONNECT: A background connection for an inventory search has been established.

· IK_INVSRCH_SEARCH: Transmit an inventory search message.

· IK_INVSRCH_ACK: Transmit an acknowledgment message.

· IK_INVSRCH_ABORT: Transmit an abort message.

· IK_INVSRCH_LISTEN: Listen for an incoming message.

· IK_INVSRCH_INGEST: Ingest an inventory result message.

· IK_INVSRCH_CLOSE: Close the connection.

· IK_INVSRCH_TERMINATE: The connection has been terminated.

· IK_INVSRCH_QUIT: Transmit a quit message.

Name: IK_OrderState
Defined in: IK_Nm.h
Description: These codes are used to specify the current state of an order connection. The valid codes are
:

· IK_PRES_BEGIN: Begin a background connection for an order.

· IK_PRES_CONNECT: A background connection for an order has been established.

· IK_PRES_SEARCH: Transmit an order message.

· IK_PRES_ABORT: Transmit an abort message.

· IK_PRES_QUIT: Transmit a quit message.

· IK_PRES_LISTEN: Listen for an incoming message.

· IK_PRES_INGEST: Ingest an order result message.

· IK_PRES_CLOSE: Close the connection.

· IK_PRES_TERMINATE: The connection has been terminated.

Name: IK_SearchType
Defined in: IK_Nm.h
Description: These codes are used to specify the current transaction type. The valid values are:

· IK_XXX_SEARCH: This value is obsolete.

· IK_INV_SEARCH: Indicates an inventory search.
· IK_PR_SEARCH: Indicates an order transaction.

· IK_FTPBR_SEARCH: Indicates an FTP browse request.

· IK_INTBR_SEARCH: Indicates an integrated browse request.

· IK_MSD_SEARCH: Indicates a directory search.

· IK_GCMD_SEARCH: Indicates a direct GCMD search.

Name: IK_State
Defined in: IK_Nm.h
Description: This data type is a C union that can exist as any one of the transaction state types described previously. The union is used to pass state information to generic functions while maintaining data type safety.

Global variables

The IK layer provides a small number of global variables, primarily for internal use. The variables are described below.

Name: IK_BOOLEAN IK_Is_Server
Defined in: IK_Comn.c
Declared in: IK_Network.h
Description: This variable is a flag that indicates whether the current program is a client or a server. This knowledge is required at run-time to provide special code for each environment.

Name: IK_BOOLEAN IK_Signal_Brk
Defined in: IK_Comn.c
Declared in: IK_Network.h
Description: This variable is a flag that tracks whether or not a system call was interrupted by an operating system signal. Signals are typically generated when an alarm timer goes off, or when the user or another process sends the program a “break” or “terminate” signal.

Functions (in alphabetical order)

Name: IK_EventCode IK_Abort(CONNECTION_INFO *pCI, IK_ArgCode argCode)
Defined in: IK_Nmfn.c
Prototype in: IK_Nmpro.h
Description: This function is the state action function that aborts the current transaction. If a connection is established, this function assembles and transmits an abort message to the server, then shuts down the connection. The argCode argument is ignored.

This function always returns the IK_ABORT_SEARCH event code.

Name: int IK_AbortSearch(void)
Defined in: IK_Nmint.c
Prototype in: IK_Nmpro.h
Description: This function repeatedly invokes the state transition mechanism until each connection in the current transaction has terminated. This function always returns 0.

Name: int IK_AddMonTS(IK_BOOLEAN tx, AGGREGATE *root)
Defined in: IK_Comn.c
Prototype in: IK_Network.h
Description: This function adds a high-resolution timestamp to the message pointed to by root. The type of the timestamp (transmit or receive) is determined by the value of the tx flag; set it to IK_TRUE if the message is being transmitted, or IK_FALSE if received.

The function returns the of its single call to IK_AddHiResTimestamp().

Name: IK_EventCode IK_BeginConnection(CONNECTION_INFO *pCI, IK_ArgCode argCode)
Defined in: IK_Nmfn.c
Prototype in: IK_Nmpro.h
Description: This function is the state action function that begins the background connection process for any type of search transaction connection. After an abort check, this function creates a non-blocking socket for use by the connection pointed to by pCI, and then initiates the background connection attempt. The argCode argument is ignored.

This function returns the following event codes:

· IK_ABORT_SEARCH – If the user aborts the transaction.

· IK_CLIENTSYS_ERROR – If a selectable socket cannot be created, if the socket cannot be made non-blocking, or if the background connection attempt cannot be initiated.

· IK_CONNECT_IN_PROGRESS – If the background connection attempt is properly initiated. Also set the error_status member of the CONNECTION_INFO structure for this connection to NM_NOSRVR_CONN, since no connection has been established yet.

Name: int IK_CauseStateTransition(void)
Defined in: IK_Nmint.c
Prototype in: IK_Nmpro.h
Description: This function checks each socket to see if data is available to be read. The Task Manager is then sent a command to dispatch the current Task for execution.

The function returns 0 if no errors occur, and -1 if an error occurs.

Name: IK_EventCode IK_CloseConnection(CONNECTION_INFO *pCI, IK_ArgCode argCode)
Defined in: IK_Nmfn.c
Prototype in: IK_Nmpro.h
Description: This function is the state action function that closes a connection for any type of connection. After an abort check, this function calls IK_Shutdown() to perform the mechanics of an orderly connection shutdown. The argCode argument is ignored.

This function always returns the IK_CONNECT_CLOSED event code

Name: int IK_CreateMessageID(char *buffer)
Defined in: IK_Nmfn.c
Prototype in: IK_Nmpro.h
Description: This function creates a message ID appropriate for the current connection in the specified buffer. Return a pointer to the message ID bufffer if successfully created, or NULL otherwise.

Name: int IK_CreateSearchConnections(AGGREGATE *pagg_root)
Defined in: IK_Nmint.c
Prototype in: IK_Nmpro.h
Description: This function is the primary entry point to create a set of connections to use in a transaction. First, a Task Manager object is created to manage the transaction. This function determines the number of servers to contact, and fetches the appropriate information on them. The CONNECTION_INFO structures for each connection are then created and initialized, and a Task is created and added to the Task Manager for each connection.

The function returns the number of connections created, or IK_RET_ABNORMAL if an error occurs.

Name: int IK_EmbedMessageID(AGGREGATE gp, char *msg_id)
Defined in: IK_Nmfn.c
Prototype in: IK_Nmpro.h
Description: This function embeds the specified message ID into the specified ODL message. Return 0 if the message ID is successfully embedded, or –1 otherwise.

Name: IK_EventCode IK_EstablishConnection(CONNECTION_INFO *pCI, IK_ArgCode argCode)
Defined in: IK_Nmfn.c
Prototype in: IK_Nmpro.h
Description: This function is the state action function that completes the background connection process for any type of search transaction connection. After an abort check, the connected socket is converted back to blocking status, and the “linger” and “keep alive” options on the socket are activated. If the socket connection has not yet completed, the IK_CONNECT_FAILED event is returned, so that another connection check may be made. The argCode argument is ignored.

This function returns the following event codes:

· IK_ABORT_SEARCH – If the user aborts the transaction.

· IK_ARCHIVE_DOWN – If the client determines that the connection cannot be established.

· IK_CLIENTSYS_ERROR – If the socket cannot be made blocking, or if the “linger” or “keep alive” options on the socket cannot be activated.

· IK_CONNECT_FAILED – If the connection attempt fails.

· IK_CONNECT_OPEN – If the connection is successfully established. Also set the connection error status to NM_NOERR. For any other event code, set the error status to NM_NOSRVR_CONN.

Name: int IK_EvaluateNetmgrStatus(void)
Defined in: IK_Nmint.c
Prototype in: IK_Nmpro.h
Description: This function checks each CONNECTION_INFO structure for the state of each connection. If all connections have terminated, return IK_RET_INVALID. Return IK_RET_OK if all have terminated, and IK_RET_ABNORMAL if an error occurs.

Name: IK_EventCode IK_GCMDConnection(CONNECTION_INFO *pCI, IK_ArgCode argCode)
Defined in: IK_Nmfn.c
Prototype in: IK_Nmpro.h
Description: This function is the state action function that executes a query to the GCMD. After an abort check, the function IK_TxMD() is invoked to process the query. The argCode argument is ignored.

This function returns the following event codes:

· IK_ABORT_SEARCH – If the user aborts the transaction, or if no search criteria were supplied

· IK_ARCHIVE_DOWN – If the client determines that the connection has been lost, or if an error occurs during transmission.

· IK_CLIENTSYS_ERROR – If no results were returned from the GCMD for a valid SQL query.

· IK_GCMD_AMBIGUOUS – If the connection attempt to the GCMD fails and more attempts are available.

· IK_TERMINATED – If no search criteria were supplied

Name: int IK_GetConnectionIndex(char *daacName)
Defined in: IK_Nmint.c
Prototype in: IK_Nmpro.h
Description: This function returns the index in the set of current connections that corresponds to the connection to the specified server. This index is required in several other functions which require an integer index to specify a connection.

Name: int IK_GetConnectionStatus(int connection_number,
 IK_SEARCH_TYPE *search_context, char *archive_name, char *msg_id)
Defined in: IK_Nmint.c
Prototype in: IK_Nmpro.h
Description: This function checks the specified CONNECTION_INFO structure and returns the current event code, and IK_RET_ABNORMAL if an error occurs.

Name: int IK_GetImage(int i_sockfd, char *pc_imagebuf, unsigned short us_imageSize)
Defined in: IK_Clnt.c
Prototype in: IK_Network.h
Description: This function reads an HDF image fragment from a socket. This function is called when the network manager gets an ODL image header, which indicates that an image is soon to follow. The image fragment is read from the socket with a call to IK_ReadBufferFromSocket().

The function returns the size of the image fragment read from the socket (in bytes) if the fragment is properly read, or the value –1 when errors occur. The value of IK_ImsErrno is left unchanged by this function, so any error code is indicative of an error in the call to IK_ReadBufferFromSocket().

Name: int IK_GetNMSlots(void)
Defined in: IK_Nmint.c
Prototype in: IK_Nmpro.h
Description: This function returns the number of connections that are still available for the current transaction.

Name: int IK_GetTotalConnections(void)
Defined in: IK_Nmint.c
Prototype in: IK_Nmpro.h
Description: This function returns the number of connections active in the current transaction.

Name: IK_ArgCode IK_IdentifyTree(AGGREGATE tree)
Defined in: IK_Nmfn.c
Prototype in: IK_Nmpro.h
Description: This function identifies the message type of the current message, and returns the appropriate IK_ArgCode value for the type. If the message cannot be identified, return the IK_XX message type. If any other error occurs, return IK_RET_ABNORMAL.

Name: IK_EventCode IK_IngestFTPBResults(CONNECTION_INFO *pCI, IK_ArgCode argCode)
Defined in: IK_Nmfn.c
Prototype in: IK_Nmpro.h
Description: This function is the state action function that ingests the FTP browse request results read from a socket described by the CONNECTION_INFO structure pointed to by pCI. The argCode argument is ignored.

After an abort check, IK_BrowseAckIngest() is called to actually ingest the data for the current FTP browse results message.

This function returns the following event codes:

· IK_ABORT_SEARCH – If the user aborts the transaction.

· IK_CLIENTSYS_ERROR – If an error occurs during the ingest.

· IK_INGESTFTPB_SUCCESS – If the FTP browse result message was successfully ingested.

Name: IK_EventCode IK_IngestImgFragment(CONNECTION_INFO *pCI, IK_ArgCode argCode)
Defined in: IK_Nmfn.c
Prototype in: IK_Nmpro.h
Description: This function is the state action function that ingests the image fragments read from a socket described by the CONNECTION_INFO structure pointed to by pCI. The argCode argument is ignored.

After an abort check, IK_IngestImage() is called to actually ingest the data for the current image fragment.

This function returns the following event codes:

· IK_ABORT_SEARCH – If the user aborts the transaction.

· IK_CLIENTSYS_ERROR – If an error occurs during the ingest.

· IK_IMAGE_COMPLETE – If the entire image has been read from the socket and assembled.

· IK_INGESTIMG_SUCCESS – If the image fragment was successfully ingested.

Name: IK_EventCode IK_IngestInvResults(CONNECTION_INFO *pCI, IK_ArgCode argCode)
Defined in: IK_Nmfn.c
Prototype in: IK_Nmpro.h
Description: This function is the state action function that ingests the inventory search results read from a socket described by the CONNECTION_INFO structure pointed to by pCI. The argCode argument is ignored.

After an abort check, IK_InvResultIngest() is called to actually ingest the data for the current inventory results message.

This function returns the following event codes:

· IK_ABORT_SEARCH – If the user aborts the transaction.

· IK_CLIENTSYS_ERROR – If an error occurs during the ingest.

· IK_INGESTINV_SUCCESS – If the inventory result message was successfully ingested.

Name: IK_EventCode IK_IngestMDData(CONNECTION_INFO *pCI, IK_ArgCode argCode)
Defined in: IK_Nmfn.c
Prototype in: IK_Nmpro.h
Description: This function is a dummy state action function that does nothing other than check for a user abort. Both arguments are ignored.

This function always returns the IK_INGESTGCMD_SUCCESS event code.

Name: IK_EventCode IK_IngestProdResults(CONNECTION_INFO *pCI, IK_ArgCode argCode)
Defined in: IK_Nmfn.c
Prototype in: IK_Nmpro.h
Description: This function is the state action function that ingests the order results read from a socket described by the CONNECTION_INFO structure pointed to by pCI. The argCode argument is ignored.

After an abort check, IK_PRequestAckIngest() is called to actually ingest the data for the current order results message.

This function returns the following event codes:

· IK_ABORT_SEARCH – If the user aborts the transaction.

· IK_CLIENTSYS_ERROR – If an error occurs during the ingest.

· IK_INGESTPR_SUCCESS – If the order result message was successfully ingested.

Name: IK_EventCode IK_ListenTree(CONNECTION_INFO *pCI, IK_ArgCode argCode)
Defined in: IK_Nmfn.c
Prototype in: IK_Nmpro.h
Description: This function is the state action function that reads an ODL message from a socket described by the CONNECTION_INFO structure pointed to by pCI. The argCode argument specifies the index in the tree_array member of the CONNECTION_INFO for the message to be read.

After an abort check, the message type is checked for appropriateness. If sendable, the message ID is embedded in the message. Next, various types of special pre-processing are performed on the message, based on the transaction type. The V0 IMS authenticator and the ECS authenticator ODL groups are added to the message. Finally, the message is written to the socket with a call to IK_TxODL().

This function returns the following event codes:

· IK_ABORT_SEARCH – If the user aborts the transaction.

· IK_ARCHIVE_DOWN – If the client receives an abort message, or the connection goes down or is reset.

· IK_CLIENTSYS_ERROR – If the ODL tree for the incoming message cannot be created, if the server status cannot be extracted from the incoming message, if the client receives a search message, if an integrated browse result message is improperly formatted, if an unknown message type is received

· IK_GOT_ACK – If the client receives an acknowledgment message.

· IK_GOT_FTPBROWSE – If the client receives an FTP browse request result message.

· IK_GOT_INVRESULT – If the client receives an inventory search result message.

· IK_GOT_MDDIFS – If the client receives a directory search result message.

· IK_GOT_NODATA – If no data is available to be read from the socket, or if the read attempt times out.

· IK_GOT_PRODESULT – If the client receives an order result message.

· IK_GOT_QUIT – If the client receives a quit message.

Name: int IK_NMstatus(int Connection_num)
Defined in: IK_Nmint.c
Prototype in: Use external declaration

Description: This function returns the error status for the specified connection.

Name: int IK_ReadBufferFromSocket(int i_sockfd, void *pv_buf, size_t sz_bufLen)
Defined in: IK_Comn.c
Prototype in: IK_Network.h
Description: This function reads sz_bufLen bytes from the socket i_sockfd, and stores them in the buffer pointed to by pv_buf. Multiple calls to write() are used until the entire buffer is filled. An alarm() call is made before and after each read() call to implement a timeout. If the timeout occurs, IK_SignalBrk is set, and –1 is returned.

The function returns the number of bytes read from the socket, or the value –1 and sets IK_ImsErrno to the following values when errors occur:

· IK_ECONNRESET – If the network connection is reset at the TCP/IP level.

· IK_EHOSTUNREACH – If the network connection is broken.

· IK_EPROTO – If any other error occurs during the read() call.

· IK_ESHUTDOWN – If repeated attempts to read data from the socket fail, as determined by the value of IK_MAX_EWOULDBLOCK.

Name: IK_EventCode IK_ReceiveImgFragment(CONNECTION_INFO *pCI, IK_ArgCode argCode)
Defined in: IK_Nmfn.c
Prototype in: IK_Nmpro.h
Description: This function is the state action function that reads an integrated browse image fragment from a socket described by the CONNECTION_INFO structure pointed to by pCI. The argCode argument is ignored.

After an abort check, a buffer is created to hold the incoming image fragment. IK_GetImage() is then called to actually read the data.

This function returns the following event codes:

· IK_ABORT_SEARCH – If the user aborts the transaction.

· IK_CLIENTSYS_ERROR – If the image buffer cannot be created, or if an error occurs while reading data from the socket.

· IK_GOT_NODATA – If no image data was read from the socket.

· IK_IMAGE_RECEIVED – If the image fragment was successfully read from the socket.

Name: IK_EventCode IK_Terminate(CONNECTION_INFO *pCI, IK_ArgCode argCode)
Defined in: IK_Nmfn.c
Prototype in: IK_Nmpro.h
Description: This function is a dummy state action function that does nothing. It acts as a placeholder in the state transition tables. Both arguments are ignored.

This function always returns the IK_TERMINATED event code.

Name: int IK_RxODL(int i_sockfd, AGGREGATE *pagg_root)
Defined in: IK_Comn.c
Prototype in: IK_Network.h
Description: This function handles the details of receiving an ODL message (pointed to by the *pagg_root argument) through a socket (specified by the i_sockfd argument). This function is used by the client and the server. This function determines the type of system (client or server) it is running on, and sets up the appropriate read alarm values. The ODL message is then read from the socket with a call to the function IK_ReadBufferFromSocket(). At this point, the ODL message consists of a contiguous stream of bytes, which represent the text of the message. The message is then written to a text file using the write() system call. The ODL function ReadLabel() is then used to read the message back into memory, converting the byte stream to complex hierarchical data structure in-memory. The temporary text file is then deleted.

The function returns the size in bytes of the message read from the socket, or the value –1 and sets IK_ImsErrno to the following values when errors occur:

· IK_ENOMEM – If the temporary file cannot be created.

· IK_EPROTO – If the incoming message timestamp cannot be added.

· IK_EWOULDBLOCK – If no data is available for reading from the specified socket.

If an error occurs during the call to IK_ReadBufferFromSocket(), the value –1 is returned, but IK_ImsErrno retains the value set by IK_ReadBufferFromSocket().

Name: IK_EventCode IK_TransmitTree(CONNECTION_INFO *pCI, IK_ArgCode argCode)
Defined in: IK_Nmfn.c
Prototype in: IK_Nmpro.h
Description: This function is the state action function that sends an ODL message through a socket described by the CONNECTION_INFO structure pointed to by pCI. The argCode argument specifies the index in the tree_array member of the CONNECTION_INFO for the message to be transmitted.

After an abort check, the message type is checked for appropriateness. If sendable, the message ID is embedded in the message. Next, various types of special pre-processing are performed on the message, based on the transaction type. The V0 IMS authenticator and the ECS authenticator ODL groups are added to the message. Finally, the message is written to the socket with a call to IK_TxODL().

This function returns the following event codes:

· IK_ABORT_SEARCH – If the user aborts the transaction.

· IK_ARCHIVE_DOWN – If the connection is broken or the transmission attempt times out.

· IK_CLIENTSYS_ERROR – If an inappropriate message type is indicated for transmission, if the message ID cannot be embedded in the message, if search-specific processing cannot be performed, or if the message cannot be sent. Also set the connection error status to NM_CLIENT_ERRSEND, or NM_PROT_ERROR (if the error is a Network Manager protocol error).

· IK_TRANSMITTED – If the message is sent. Also set the error_status member of the CONNECTION_INFO structure for this connection to NM_NOSRVR_CONN, since no connection has been established yet.

Name: IK_TxMD(AGGREGATE root, IK_Gcmd ***ptr)
Defined in: IK_Gcmd.c
Prototype in: IK_Gcmd.h
Description: This function opens a connection to the database at the GCMD to retrieve DIF information based on the current search criteria. The results are placed in the IK_Gcmd structure referred to by ***ptr.

This function returns 0 if the function executes properly, or the value –1 and sets IK_ImsErrno to the following values when an error occurs:

· IK_EINVAL – If ptr is NULL, if the DATA_CENTER_ID, DATASET_ID, or MD_ENTRY_ID parameters are unavailable.

· IK_ENO_HITS – If no results were returned from the GCMD for a valid query.

· IK_ENOTCONN – If a connection to the GCMD server cannot be established.

Name: int IK_TxODL(int i_sockfd, AGGREGATE *pagg_root)
Defined in: IK_Comn.c
Prototype in: IK_Network.h
Description: This function handles the details of sending an ODL message (pointed to by the *pagg_root argument) through a socket (specified by the i_sockfd argument). This function is used by the client and the server. This function determines the type of system (client or server) it is running on, and sets up the appropriate write alarm values. At this point, the ODL message consists of a contiguous stream of bytes, which represent the text of the message. The message is then written to a text file using the ODL function WriteLabel().The ODL message is then read from the file with multiple calls to read(), and written to the socket with WriteBufferToSocket(). The temporary text file is then deleted.

The function returns the size in bytes of the message transmitted, or the value –1 and sets IK_ImsErrno to the following values when errors occur:

· IK_ENOMEM – If the temporary file cannot be created.

· IK_EPROTO – If the outgoing message timestamp cannot be added, or the protocol version information cannot be added.

If an error occurs during the call to IK_WriteBufferToSocket(), the value –1 is returned, but IK_ImsErrno retains the value set by IK_WriteBufferToSocket().

Name: int IK_WriteBufferToSocket(int i_sockfd, void *pv_buf, size_t sz_bufLen)
Defined in: IK_Comn.c
Prototype in: IK_Network.h
Description: This function writes the binary contents of the buffer pointed to by pv_buf, of size sz_bufLen, to the socket i_sockfd. Multiple calls to write() are used until the entire buffer is transmitted. An alarm() call is made before and after each write() call to implement a transmission timeout. If the timeout occurs, IK_SignalBrk is set, and –1 is returned.

The function returns the number of bytes written to the socket, or the value –1 and sets IK_ImsErrno to the following values when errors occur:

· IK_EPROTO – If an error occurs during a write() call.

� EMBED MSDraw.Drawing.8 ���

� “The EOSDIS Version 0 IMS IK Library: Server-side internals”, by Eric Winter, Raytheon STX.

� The PRES notation is an artifact of an earlier practice in which “order” messages were referred to as “product request” messages.

2
3

_962016037.unknown

