

Raytheon STX

The EOSDIS Version 0 IMS IK Library

Server-side internals

The EOSDIS Version 0 IMS IK Library

Server-side internals

Introduction

Purpose

This document will describe the internal workings if the IK library of the EOSDIS Version 0 IMS code. Specifically, this document will describe how the library is used to build a V0 IMS server or gateway.

Target audience

This document is intended primarily for UNIX/C developers who are maintaining or enhancing the V0 IMS server code. The reader is assumed to be familiar with the operation of the V0 IMS client and servers, as well as the V0 IMS client development environment. The reader is also assumed to be familiar with the V0 IMS Data Dictionary, ODL (Object Description Language), and the concepts of TCP/IP programming using BSD sockets.

Background

Components

The IK library is a library of C-language routines developed by the V0 IMS development team to simplify the process of developing a V0 IMS server or gateway. The IK library provides a set of routines which allow a V0 IMS server to establish a connection to a V0 IMS client and exchange V0 IMS messages with the client. The IK library also provides a set of header files which provide definitions of constants and data structures which, in conjunction with the ODL (Object Description Language) library, simplify the process of message creation and parsing. The IK library is a small subset of the code in the IK layer. The IK layer is all of the code in the V0 IMS client which handles communication, database access, valids manipulation, and all other functions not directly related to the user interface. Since the majority of these functions are not required at the server end, they are not included in the IK library.

The general structure of a V0 IMS server

A V0 IMS server is conceptually simple (see Figure 1). The server lies dormant until a connection from a client is requested. Once the connection is established, the server listens for messages from the client, and processes each message in turn. Typically, messages from the client are search requests. When a search request is received, the server parses the message and extracts the criteria for the type of search requested, and then issues a query on behalf of the client to the local database. Results of the query are then repackaged in ODL format and sent back to the client. The server then (usually) terminates. Conceptually, each instance of the server handles a single transaction with a client. Subsequent contacts to the server from the same V0 IMS client typically communicate with a separate physical instance of the V0 IMS server process.

FIGURE 1: Schematic diagram of the operation of a V0 IMS server

A simple server skeleton

Purpose and assumptions

The use of the IK library is best illustrated by an example. Our example will be a skeleton of a simple V0 IMS server program. This example shows how to set up a server as a listening process, how to handle an individual connection, and how to process requests from a V0 client. Note that this example does not illustrate the details of message creation or parsing, or how to set up a server as a daemon process.

The general outline of the program is as follows:

1. Initialize program, enter listening state.

2. Wait for connection attempt from client.

3. Accept client connection.

4. Service client request.

5. Terminate.

This simple example can be used as the basis for a real V0 IMS server. Note that this example does not implement the details of converting the server process to a UNIX daemon process; details on that procedure may be found in any text on UNIX network programming. Alternatively, a much more detailed sample implementation can be obtained from the V0 IMS server cookbook distribution, which is available from http://harp.gsfc.nasa.gov/documents/Server-cookbook.html.

The code

/* imsserver.c */

/***/

/* Header files */

#include "IK_Ims.h"

#include <assert.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "odldef.h"

#include "odlinter.h"

#include "IK_Errno.h"

#include "IK_Network.h"

#include "IK_Syslog.h"

/***/

/* Local #define directives */

#define SYSLOG "./syslog"

#define ROOT_AGG_NAME "ROOT"

/***/

/* Define globals */

/* Define the global error code. */

IK_Errno IK_ImsErrno;

/***/

/* Function prototypes */

static int SetUpSocket(int i_listenSocket);

static int ProcessDirectorySearch(AGGREGATE agg_request,

 AGGREGATE *pagg_directoryResult);

static int ProcessInventorySearch(AGGREGATE agg_request,

 AGGREGATE **ppagg_inventoryResultChunks,

 int *pi_numChunks);

static int ProcessIntegratedBrowseRequest(AGGREGATE agg_request,

 AGGREGATE *pagg_browseHeader,

 char **ppc_image, int *pi_imageSize);

static int ProcessFTPBrowseRequest(AGGREGATE agg_request,

 AGGREGATE *pagg_ftpBrowseResult);

static int ProcessOrder(AGGREGATE agg_request, AGGREGATE *pagg_orderResult);

static int CreateQuitMessage(AGGREGATE agg_message, AGGREGATE *pagg_quit);

static void Quit(int i_status);

/***/

/* Begin main program. Exit after one message has been processed. */

int

main(int argc, char *argv[])

{

 /* TCP port to listen at */

 int i_port;

 /* Socket to listen at */

 int i_listenSocket;

 /* Socket for new connection */

 int i_newSocket;

 /* ODL message read from net */

 AGGREGATE agg_request;

 /* Size in bytes of incoming message */

 int i_requestSize;

 /* ODL message for directory search result */

 AGGREGATE agg_directoryResult;

 /* Array of result aggregates for inventory result chunks, and

 number of chunks in the array */

 AGGREGATE *pagg_inventoryResultChunks;

 int i_numChunks;

 /* Tree to hold an integrated browse header, bytes for the image,

 and its size */

 AGGREGATE agg_browseHeader;

 char *pc_image;

 int i_imageSize;

 /* FTP browse result tree */

 AGGREGATE agg_ftpBrowseResult;

 /* Order result tree */

 AGGREGATE agg_orderResult;

 /* ODL tree for ACK message */

 AGGREGATE agg_ack;

 /* ODL tree for QUIT message */

 AGGREGATE agg_quit;

 /* Function return code */

 int i_status;

 /* Loop counter */

 int i;

 /* Generic ODL parameter, value */

 PARAMETER param;

 VALUE value;

 /*---*/

 /* Process command line. */

 if (argc < 2) {

(void) fprintf(stderr, "Usage: %s port\n", argv[0]);

exit(1);

 }

 /* Fetch the port number. */

 i_port = atoi(argv[1]);

 if (i_port < 0) {

(void) fprintf(stderr, "Port number must be non-negative!");

exit(1);

 }

 /*---*/

 /* Set up the syslog. */

 if (IK_NameSyslog(SYSLOG) < 0) {

(void) fprintf(stderr, "Error %d in IK_NameSyslog()!", IK_ImsErrno);

Quit(1);

 }

 /*---*/

 /* Create a socket to listen at. */

 i_listenSocket = IK_InitConnection(i_port);

 if (i_listenSocket == -1) {

IK_vSyslog(LOG_ERR, "Error %d in IK_InitConnection()!", IK_ImsErrno);

Quit(1);

 }

 /* Log the setup status. */

 IK_vSyslog(LOG_NOTICE, "%s now listening at port %d, socket %d.",

 argv[0], i_port, i_listenSocket);

 /*---*/

 /* Now wait until we get a connection. */

 while (1) {

 i_newSocket = IK_Accept(i_listenSocket);

 if (i_newSocket == -1) {

 if (IK_ImsErrno == IK_ETIMEDOUT) {

 IK_Syslog(LOG_NOTICE, "Timed out on socket wait, trying again.");

 } else {

 IK_vSyslog(LOG_NOTICE, "Error %d in SetUpSocket()!",

 IK_ImsErrno);

 Quit(1);

 }

 } else {

 break;

 }

 }

 /* Log the status. */

 IK_vSyslog(LOG_NOTICE, "%s now receiving client on socket %d.",

 argv[0], i_port, i_newSocket);

 /*---*/

 /* Create a new ODL aggregate to hold the incoming message. */

 agg_request = NewAggregate(NULL, KA_GROUP, ROOT_AGG_NAME, NULL);

 if (agg_request == NULL) {

 IK_Syslog(LOG_ERR, "Can't create new aggregate for request!");

 Quit(1);

 }

 /* Read a request message from the client. */

 i_requestSize = IK_RxODL(i_newSocket, &agg_request);

 if (i_requestSize == -1) {

IK_vSyslog(LOG_ERR, "Error %d in IK_RxODL()!", IK_ImsErrno);

Quit(1);

 }

 /*---*/

 /* Process the message based on the search type that it

 represents. */

 if (FindAggregate(agg_request, "DIRECTORY_SEARCH")) {

/* Create a directory search result tree and send it back to

 the client, delete the result tree, then exit. */

i_status = ProcessDirectorySearch(agg_request, &agg_directoryResult);

if (i_status == -1) {

 IK_vSyslog(LOG_ERR, "Error %d processing directory search!",

 IK_ImsErrno);

 Quit(1);

}

if (IK_TxODL(i_newSocket, &agg_directoryResult) == -1) {

 IK_vSyslog(LOG_ERR, "Error %d transmitting directory result!",

 IK_ImsErrno);

 Quit(1);

}

RemoveAggregate(agg_directoryResult);

 } else if (FindAggregate(agg_request, "INVENTORY_SEARCH")) {

/* Create a set of one or more inventory result chunks, then

 send them back to the client, followed by a quit

 message. Then exit. */

i_status = ProcessInventorySearch(agg_request,

 &pagg_inventoryResultChunks,

 &i_numChunks);

if (i_status == -1) {

 /* An error occurred while processing the search request;

 send a QUIT. */

 if (CreateQuitMessage(agg_request, &agg_quit) == -1) {

IK_vSyslog(LOG_ERR, "Error %d while creating QUIT message!",

 IK_ImsErrno);

Quit(1);

 }

 assert(agg_quit != NULL);

 if (IK_TxODL(i_newSocket, &agg_quit) == -1) {

IK_vSyslog(LOG_ERR, "Error %d transmitting QUIT message!",

 IK_ImsErrno);

Quit(1);

 }

 RemoveAggregate(agg_quit);

} else {

 assert(i_numChunks > 0);

 assert(pagg_inventoryResultChunks != NULL);

 /* Send each chunk of the inventory result. */

 for (i = 0; i < i_numChunks; i++) {

/* Send the current inventory results chunk. */

assert(pagg_inventoryResultChunks[i] != NULL);

if (IK_TxODL(i_newSocket, &pagg_inventoryResultChunks[i])

 == -1) {

 IK_vSyslog(LOG_ERR, "Error %d transmitting inventory "

 "result chunk %d!", IK_ImsErrno, i);

 Quit(1);

}

RemoveAggregate(pagg_inventoryResultChunks[i]);

pagg_inventoryResultChunks[i] = NULL;

/* Wait for the ACK from the client, which indicates

 that the chunk was received. */

agg_ack = NewAggregate(NULL, KA_GROUP, ROOT_AGG_NAME, NULL);

if (agg_ack == NULL) {

 IK_Syslog(LOG_ERR, "Can't create new aggregate for ACK!");

 Quit(1);

}

i_requestSize = IK_RxODL(i_newSocket, &agg_ack);

if (i_requestSize == -1) {

 IK_vSyslog(LOG_ERR, "Error %d in IK_RxODL() for "

 "ACK message!", IK_ImsErrno);

 Quit(1);

}

RemoveAggregate(agg_ack);

 }

 /* Delete the chunk array. */

 free(pagg_inventoryResultChunks);

}

/* All chunks sent; send the QUIT. */

if (CreateQuitMessage(agg_request, &agg_quit) == -1) {

 IK_vSyslog(LOG_ERR, "Error %d while creating QUIT message!",

 IK_ImsErrno);

 Quit(1);

}

assert(agg_quit != NULL);

if (IK_TxODL(i_newSocket, &agg_quit) == -1) {

 IK_vSyslog(LOG_ERR, "Error %d transmitting QUIT message!",

 IK_ImsErrno);

 Quit(1);

}

RemoveAggregate(agg_quit);

 } else if (FindAggregate(agg_request, "BROWSE_REQUEST")) {

/* Determine if this is an integrated or FTP browse request. */

param = FindParameter(agg_request, "BROWSE_TYPE");

 assert(param != NULL);

value = FirstValue(param);

 assert(value != NULL);

if (strcmp(value->item.value.string, "Y") == 0) {

 /* Integrated browse */

 i_status = ProcessIntegratedBrowseRequest(agg_request,

 &agg_browseHeader,

 &pc_image, &i_imageSize);

 if (i_status == -1) {

IK_vSyslog(LOG_ERR, "Error %d processing integrated browse!",

 IK_ImsErrno);

Quit(1);

 }

 /* Send the integrated browse image header. */

 assert(agg_browseHeader != NULL);

 if (IK_TxODL(i_newSocket, &agg_browseHeader) == -1) {

IK_vSyslog(LOG_ERR, "Error %d transmitting integrated browse "

 "header message!", IK_ImsErrno);

Quit(1);

 }

 RemoveAggregate(agg_browseHeader);

 /* Send the integrated browse image data. */

 if (IK_PutImage(i_newSocket, pc_image,

 (unsigned short) i_imageSize) == -1) {

IK_vSyslog(LOG_ERR, "Error %d transmitting image!",

 IK_ImsErrno);

Quit(1);

 }

 free(pc_image);

} else {

 /* FTP browse */

 i_status = ProcessFTPBrowseRequest(agg_request,

 &agg_ftpBrowseResult);

 if (i_status == -1) {

IK_vSyslog(LOG_ERR, "Error %d processing FTP browse!",

 IK_ImsErrno);

Quit(1);

 }

 if (IK_TxODL(i_newSocket, &agg_ftpBrowseResult) == -1) {

IK_vSyslog(LOG_ERR, "Error %d transmitting FTP browse result!",

 IK_ImsErrno);

Quit(1);

 }

 RemoveAggregate(agg_ftpBrowseResult);

}

 } else if (FindAggregate(agg_request, "PRODUCT_REQUEST")) {

/* Order */

i_status = ProcessOrder(agg_request, &agg_orderResult);

if (i_status == -1) {

 IK_vSyslog(LOG_ERR, "Error %d processing order!", IK_ImsErrno);

 Quit(1);

}

if (IK_TxODL(i_newSocket, &agg_orderResult) == -1) {

 IK_vSyslog(LOG_ERR, "Error %d transmitting order result!",

 IK_ImsErrno);

 Quit(1);

}

RemoveAggregate(agg_orderResult);

 } else if (FindAggregate(agg_request, "QUIT")) {

/* Quit - a client-side run-time error occurred */

IK_Syslog(LOG_ERR, "QUIT received - a runtime error occurred at the "

 "client!");

 } else if (FindAggregate(agg_request, "ABORT")) {

/* Abort - a user-generated abort at the client */

IK_Syslog(LOG_ERR, "ABORT received - user aborted transaction!");

 } else {

IK_Syslog(LOG_ERR, "Unexpected message type received!");

 Quit(1);

 }

 /* Delete the request message. */

 RemoveAggregate(agg_request);

 /*---*/

 /* Close the syslog. */

 IK_CloseSyslog();

 /*---*/

 /* Exit normally. */

 exit(0);

}

/***/

static int

ProcessDirectorySearch(AGGREGATE agg_request,

 AGGREGATE *pagg_result)

{

 return(0);

}

/***/

static int

ProcessInventorySearch(AGGREGATE agg_request,

 AGGREGATE **ppagg_chunk, int *pi_numChunks)

{

 return(0);

}

/***/

static int

ProcessIntegratedBrowseRequest(AGGREGATE agg_request,

 AGGREGATE *pagg_browseHeader,

 char **ppc_image, int *pi_imageSize)

{

 return(0);

}

/***/

static int

ProcessFTPBrowseRequest(AGGREGATE agg_request,

AGGREGATE *pagg_ftpBrowseResult)

{

 return(0);

}

/***/

static int

ProcessOrder(AGGREGATE agg_request, AGGREGATE *pagg_orderResult)

{

 return(0);

}

/***/

static int

CreateQuitMessage(AGGREGATE agg_request, AGGREGATE *pagg_quit)

{

 /* The QUIT group within the message */

 AGGREGATE grp_quit;

 /* ODL parameter to point to message ID in original message */

 PARAMETER param_messageID;

 /* Temporary ODL parameter holder */

 PARAMETER param;

 /* Pointer to hold converted data */

 char *pc_data;

 /* Temporary ODL value */

 VALUE_DATA valdat;

 /*---*/

 /* Create the root aggregate, */

 *pagg_quit = NewAggregate(NULL, KA_GROUP, ROOT_AGG_NAME, NULL);

 if (*pagg_quit == NULL) {

IK_ImsErrno = IK_ENOMEM;

return(-1);

 }

 /* Create the QUIT group. */

 grp_quit = NewAggregate(*pagg_quit, KA_GROUP, "QUIT", NULL);

 if (grp_quit == NULL) {

IK_ImsErrno = IK_ENOMEM;

return(-1);

 }

 /*---*/

 /* Find the message ID parameter. */

 param_messageID = FindParameter(agg_request, "MESSAGE_ID");

 if (param_messageID == NULL) {

IK_ImsErrno = IK_EBAD_ODLTREE;

return(-1);

 }

 /* Copy it and paste it into the QUIT group. */

 param = CopyParameter(param_messageID);

 (void) PasteParameter(*pagg_quit, param);

 /*---*/

 /* Create the status code parameter. */

 param = NewParameter(*pagg_quit, KP_ATTRIBUTE, "STATUS_CODE");

 if (param == NULL) {

IK_ImsErrno = IK_ENOMEM;

return(-1);

 }

 param->value_kind = KV_SCALAR;

 /* Create the ODL value for the QUIT status. */

 pc_data = "1";

 valdat = ODLConvertInteger(pc_data, strlen(pc_data));

 if (NewValue(param, &valdat) == NULL) {

IK_ImsErrno = IK_ENOMEM;

return(-1);

 }

 /*---*/

 /* Return normally. */

 return(0);

}

/***/

static void

Quit(int i_status)

{

 IK_CloseSyslog();

 exit(i_status);

}

Walking through the example

Header files

Any source file which uses IK library code or data must always include the file IK_Ims.h as its first header. This requirement arises because IK_Ims.h performs several special duties in the code, including global text replacements to address function bugs. This file also causes the insertion of the special header Gaea_config.h, which is generated by the configure script used to build the IK library. This latter file contains much platform- and installation-specific information which the source code requires before it can be properly compiled and linked.

The initial header is followed by the inclusion of several standard C headers, and then the headers for the ODL library. The latter headers are required by any code which manipulates ODL trees.

Finally, the major header files for the IK library are included. The file IK_Errno.h is needed to supply definitions of program error codes. The file IK_Network.h provides definitions and prototypes required to use the IK library functions. Finally, the file IK_Syslog.h is required in order to use the IK library system log (syslog) functions, IK_Syslog() and IK_vSyslog().

#define directives

These constants are for the convenience of the sample program. The SYSLOG symbol refers to the path to the log file to be created by the program; any location may be used. The ROOT_AGG_NAME symbol refers to the name assigned to the top-level ("root") aggregate in an ODL tree; this value should always be "ROOT".

Globals

The IK_ImsErrno global is the global error code for the IK library. This variable should only be accessed when an IK library call returns an error code (usually -1), and should never be manually set to any value other than 0 (IK_ENOERROR). In most respects, this variable should be treated like the UNIX global errno.

The command line

The example program is expecting the user to supply a single command-line argument - the TCP port number to use for listening for client connection requests. The user should take care to select a port number which is not currently in use.

Syslog initialization

The program logging facility must be initialized before it can be used. The log is initialized by specifying a log file name to the function IK_NameSyslog(). Subsequent calls to IK_Syslog() and IK_vSyslog() will be written to the file named in the call, along with the current date and time (assuming the log threshold criterion is met).

Socket creation

A server needs to create a socket at which it can listen for connection requests from clients. This task is accomplished by the function IK_InitConnection(). Given a TCP port number, this function creates a TCP/IP socket which can be used for this purpose. The return value from this function is the socket descriptor (a positive integer), or -1 if an error occurs during the creation of the listening socket. This socket descriptor is then subsequently used to wait for a connection request, at which point a new socket is created to handle the incoming client message and any server responses. A log entry (at the LOG_NOTICE priority level) is then made, indicating the port number and socket descriptor being used to listen for client connection requests.

Waiting for the connection from the client

When the listening socket is established, a call is made to IK_Accept() to wait for the next client connection attempt. This function acts as a wrapper around the accept() system call. This function returns a descriptor for the new socket through which the incoming message from the client may be read, and through which responses may be written to the client by the server. This function returns -1 if the wait times out (and sets IK_ImsErrno to IK_ETIMEDOUT if so), or an error occurs while awaiting the client connection request. If the wait times out, the server is given an opportunity to perform other functions, and then resume the wait for a connection request. Once a connection attempt is detected, a log entry is made indicating the port and new socket descriptor. The new socket has several standard socket options set automatically by the library: the socket is blocking (read and write operations are synchronous), and the "linger" and "keepalive" options are activated to ensure unsent data is flushed and slow connections are kept open.

Reading the request message from the client

Before any ODL message can be read from the socket (or used in any other way, for that matter), an ODL data structure (AGGREGATE) must be created to hold the message. This is accomplished by a call to the ODL library function NewAggregate(). This function returns an AGGREGATE (which in actuality is defined as a pointer to a data structure), or the value NULL if the AGGREGATE could not be created (this should only occur if the process runs out of free memory - a rare event).

The socket descriptor, and a pointer to the new AGGREGATE, are then passed to the IK library function IK_RxODL(), which receives the message from the client and packs it into the ODL AGGREGATE, where it can be accessed and manipulated by ODL library functions. This function returns the number of characters in the message (which is always pure text), or the value -1 if an error occurs while reading the request message from the socket.

Processing the request

Now that the request message from the client has been read, the type of the message must be determined in order to determine how the request should be processed. Message classification is performed by searching for ODL AGGREGATE structures with specific name strings. The name strings are indicative of the requested transaction type. Under normal conditions, a server should only receive request messages, quit, or abort messages; the balance of the available ODL message types within the V0 IMS system should never be received by a server. Receipt of any of these unexpected messages should be considered a fatal run-time error (although the server need not send a response of any kind to the client).

The directory search, FTP browse, and order requests are all processed in the same fashion - a single request message is received, and a single response message is transmitted. Message transmission is performed using the function IK_TxODL(), which is the transmission counterpart of the function IK_RxODL(). The function IK_TxODL() transmits the message to the socket supplied in its first argument, and returns 0 upon successful completion or -1 if an error occurs during transmission. In each case, once the message is transmitted, it should be deleted using the ODL library function RemoveAggregate(), which traverses the ODL tree hierarchy and frees the memory assigned to each component of the tree.

An inventory search is more complex, since it can give rise to the transmission of at least two messages to the client - one or more inventory result messages, followed by a quit message when all inventory result messages (also called "chunks") have been transmitted. After each chunk is transmitted, the server waits for the receipt of an acknowledgment message (ACK) from the client, indicating that the client successfully received the previous chunk. In this manner, the client is guaranteed to receive each result message, in the original order of transmission. After each chunk is transmitted, it is deallocated by a call to RemoveAggregate(). Note that if a run-time error message occurs during processing of the inventory search request, a quit message must be transmitted to the client.

If a browse request message is received, the type of browse image must be determined (integrated or FTP). This determination is made by examining the value of the BROWSE_TYPE parameter. If the request is for an FTP browse image, the single response message is generated and transmitted. If the request is for an integrated browse image, an ODL message containing header information on the image is first transmitted, and then the image data itself is then transmitted to the client through the same socket. The image header and data are each deallocated after they are transmitted.

Finally, after the request has been processed, the request message itself is deleted by a call to RemoveAggregate(). The log is then closed with a call to IK_CloseSyslog(), and the program terminates.

The IK library interface

Environment variables

SYSLOG_LEVEL

The SYSLOG_LEVEL environment variable is used to control the level of detail provided in the system log. The lower the number, the higher the level of detail provided. SYSLOG_LEVEL can be thought of as a limit value - any log message with a log level less than or equal to the SYSLOG_LEVEL value will be written to the log. This approach allows tuning of the level of detail collected while it also eliminates the need to put conditional code around each call to a syslog function.

Variables

Error variables

IK_ImsErrno

This variable must be defined (not simply declared as extern) in the server code, since it is not defined in the IK library. It should be defined as a global variable of type IK_Errno (this type is an alias of type int, defined in IK_Errno.h using a typedef), like this (the definition should be outside of any function definition):

IK_Errno IK_ImsErrno;

The possible error codes are listed in the header file IK_Errno.h, which is distributed with the IK library. These constants are implemented as a set of C preprocessor #define directives in the header file. This set of constants (there are several hundred values) forms the range of valid values for the program global error code IK_ImsErrno.

This variable should never be set by the server code to any value other than 0 (IK_ENOERROR), since it can be set to any value by any function in the IK library. This variable is typically only examined when one of the IK library functions indicates an error has occurred, usually by returning a value of -1.

Functions

Networking functions

extern int IK_InitConnection(int port);

This function creates a new socket and prepares it to accept new client connections on the specified TCP port (the port argument). The requisite host information is gathered, the socket is created and bound to the server address, and then the socket is set to listen for connection attempts. This function returns the descriptor for the new socket as its return value, or -1 if an error occurs.

The function can set IK_ImsErrno to the value IK_EPROTO if any of the following conditions arise:

· ... if the server name cannot be determined (gethostname() fails)

· ... if the server address cannot be determined (gethostbyname() fails)

· ... if the new socket cannot be created (socket() fails)

· ... if the server address cannot be bound to the socket (bind() fails)

· ... if the server cannot be set to listen for connections (listen() fails)

extern int IK_Accept(int socketno);

This function accepts requests for new client connections on the socket specified in its argument. When a connection is accepted, a new socket is created (independent of the listening socket), and the descriptor for the new socket is returned as the value of the function. This new socket is then used for reading data from and sending data to the client.

The function can set IK_ImsErrno to the value IK_EPROTO if any of the following conditions arise:

· ... if the socket cannot be selected (select() fails)

· ... if the new socket cannot be created (accept() fails)
The function can set IK_ImsErrno to the value IK_ETIMEDOUT if any of the following conditions arise:

· ... if the wait for a connection attempt times out (select() times out after 5 minutes (IK_TIMEOUT_LENGTH seconds))
The function sets IK_ImsErrno to the value IK_ENOERROR if no errors occur.

extern int IK_PutImage(int socketno, char *buffer, unsigned short image_chunk_sz);

This function writes an image to the socket specified in the socketno argument. The image is presumed to be in HDF (Hierarchical Data Format), in the block pointed to by buffer, and of size image_chunk_sz bytes. This function simply calls a lower-level function, IK_WriteBufferToSocket().

The function sets IK_ImsErrno to the value IK_EPROTO if any of the following conditions arise:

· ... if the write to the socket fails (write() fails).

extern int IK_RxODL(int i_sockfd, AGGREGATE *pagg_root);

Read an ODL tree from the specified socket (i_sockfd) and place its contents into the ODL tree pointed to by pagg_root. This function is called when the calling process is ready to process another ODL tree. It reads the ODL label from the socket, then converts the ODL label to a label file on disk, and then reads in and returns that tree. This function returns the number of bytes read from the socket, or -1 if an error occurs, and sets the value of IK_ImsErrno as described below.

The function sets IK_ImsErrno to the value IK_ENOERROR if no errors occur.

The function sets IK_ImsErrno to the value IK_EWOULDBLOCK if no data is available to be read (nothing comes in for 5 minutes).

The function sets IK_ImsErrno to the value IK_ENOMEM if a unique temporary filename cannot be created to hold the message read from the socket.

The function sets IK_ImsErrno to the value IK_EHOSTUNREACH if no network path to the client can be determined while reading the data from the socket (read() fails with errno set to EHOSTUNREACH).

The function sets IK_ImsErrno to the value IK_ESHUTDOWN if multiple attempts to read data from the socket fail.

The function sets IK_ImsErrno to the value IK_EPROTO if any of the following conditions arise:

· ... if the timestamp cannot be added to the incoming message.

· ... if the network connection to the client is lost (read() fails otherwise).

extern int IK_TxODL(int, AGGREGATE *);

This function transmits an ODL tree. This function is called when an ODL tree is ready to be transmitted to the other end of the socket. First, the ODL tree is converted to an ODL label by writing the tree to a file. Then the size of the ODL tree is transmitted. Finally, the label file is sent via the socket. This function returns the number of bytes written to the socket, or -1 if an error occurs, and sets the value of IK_ImsErrno as described below.

The function sets IK_ImsErrno to the value IK_EPROTO if an error occurs while writing data to the socket (write() fails).
The function sets IK_ImsErrno to the value IK_ENOMEM if a unique temporary filename cannot be created to hold the message to write to the socket.

The function sets IK_ImsErrno to the value IK_EPROTO if any of the following conditions arise:

· ... if the timestamp cannot be added to the transmitted message.

· ... if the version group cannot be added to the transmitted message.

Syslog functions

int IK_NameSyslog(char *filename)

This function creates a syslog file with the specified filename. The log file is opened, and left open while the program runs.

void IK_Syslog(int priority, char *message)

This function writes the string in message to the current syslog file if the specified priority value is less than or equal to the current value of SyslogLevel.

void IK_vSyslog(int priority, char *format, ...)

This function is identical to IK_Syslog(), except it takes a format string (format) and a variable argument list, of the same type as the standard C function printf().

void IK_CloseSyslog(void)

This function closes the current syslog file.

2
3

