Documentation for the IW library

Mark Solomon

IW.c

IW_ParseConfig - Parse in the lib/conf/SETUP.dat file. We read the config at run-time, so that admins can change minor aspects of the configuration without having to do a full system

recompile.

IW_Var - Return a setup variable, or empty if missing (which should suffice for most tests).

IW_SetVar - Set a setup variable, or empty if missing (which should suffice for most tests).

IW_Init - Init the IW library. This sets up the environment (in case the IK routines need

to be called), and possibly will do other stuff.

IW_Err - Make note of an error. Returns -1 always. Use of error number is yet to be specified. Use 0 for now.

IW_Die - Die, calling the failure handler.

IW_SetDieHandler - Set the failure-handling routine.

IW_Malloc - Safe malloc. Calls IW_Die if malloc fails.

IW_Realloc - Safe realloc. Calls IW_Die if realloc fails.

IW_Getenv - Nicer getenv. Returns empty string instead of NULL if variable is absent, which suffices for most tests.

IW_Putenv - Nicer putenv. Formats and allocates string for you.

==

IW_Array.c - Pseudoclass for variable-sized arrays. See IW_Array.h for details.

_IW_ArrayNewBufSize - Given a new size for the ARRAY, and a current buffer size, compute a new buffer size which is just large enough to hold the new number of elements, and which is arrived at by repeated doubling (or halving) of the current buffer size.

IW_ArrayAlloc - Allocate space for a IW_Array, then create it using IW_ArrayCreate(), and return it.

IW_ArrayAllocSize - Allocate space for a IW_Array, then create it using IW_ArrayCreateSize(), and return it.

IW_ArrayFree - Given a pointer to a malloc'ed IW_Array, destroy the array and then free the pointer.

IW_ArraySetSize - Change the size of the array.

IW_ArrayGetSize - Get the size of the IW_Array. Note that this is not the same as the internal buffer size! It is the number of elements currently "stored" in the IW_Array.

IW_ArrayElems - Return the underlying C array of elements in the IW_Array, or NULL on failure.

IW_ArrayAdd - Add (a pointer to) an element into the array, at the end. You must allocate the space for the element, if there is danger of it disappearing!

IW_ArrayAtGet - Get the element of the array indexed by 'i', and set '*elemp' to that element.

IW_ArrayAt - Return the element of the array indexed by 'i', or NULL in the event of an error.

IW_ArrayAtPut - Store the supplied element at the given index of the array. If there is already an elem stored at that index (i.e., the slot is not NULL), then this function calls the discard function to get rid of the existing elem.

/**

 *

 * Iterator functions

 *

 **

 *

 * All container Pseudoclasses try to support container-specific

 * "iterator" types which have the same general syntax and usage.

 * For example, if 'IW_Bag' is a container Pseudoclass type and you

 * wanted to print out the elements of 'mybag', you would do so

 * as follows:

 *

 *| 1. Declare 'bi' as a IW_BagIter.

 *| 2. Call IW_BagIRewind() to rewind 'bi' to the beginning of 'mybag'.

 *| 3. Keep calling IW_BagINext() to get the next element out of the

 *| bag... it will return:

 *| - IW_BagOGO if an element was actually retrieved

 *| - IW_BagOSTOP if no element was retrieved because the end of

 *| the collection was reached.

 *| - values less than IW_BagOK on error.

 *

 * Repeated calls to IW_BagINext() are okay when OSTOP is returned;

 * the subsequent calls will just return OSTOP (much like getting

 * characters from a stream which is at "end of file").

 *

 * The above example describes a "detached iterator", in that the iterator

 * variable is separate from the container it is iterating over.

 * In the case of a IW_Array, the "detached iterator" code looks like:

 *

 *| IW_Array A; * an array of objects *\

 *| IW_ArrayIter ai; * an iterator *\

 *| int index; * index into array *\

 *| Object *elem; * element stored in array *\

 *| ...

 *| IW_ArrayIRewind(&A, &ai); * rewind to begin *\

 *| while (IW_ArrayINext(&A, &ai, &index, &elem) == IW_ArrayGO) {

 *| * do stuff with index and/or elem *\

 *| }

 *

 * Some container Pseudoclasses may support "attached iterators",

 * where every container has its own internal iterator that you can

 * use (much like a FILE's internal file pointer in stdio routines).

 * The notation is simpler, and does not require the declaration of

 * an additional variable. In the case of a IW_Array, the "attached

 * iterator" code looks like:

 *

 *| IW_Array A; * an array of objects *\

 *| int index; * index into array *\

 *| Object *elem; * element stored in array *\

 *| ...

 *| IW_ArrayRewind(&A); * rewind to begin *\

 *| while (IW_ArrayNext(&A, &index, &elem) == IW_ArrayGO) {

 *| * do stuff with index and/or elem *\

 *| }

 *

 */

IW_ArrayIRewind - Rewind a IW_ArrayIter to the beginning of the array.

IW_ArrayINext - Given a IW_ArrayIter which points into a IW_Array, set *elemp to point to the element, and advance the iterator to the next element.

IW_ArrayDo - Perform a function on each element. The function should be declared as:

 int action(IW_Elem elem, int index, IW_Arg arg);

This action will be invoked for every element in the IW_Array; when it is called, 'elem' will be the current element, 'index' will be the current index (of that element), and 'arg' will be the same 'arg' passed into the call to IW_ArrayDo().

IW_ArrayQsort -- Do a quicksort on the array's elements.

IW_ArrayQsortElems - Do a quicksort on the array's elements.

==

IW_Cgi.c

/**

 * IW_Cgi.c

 **

 *

 * DESCRIPTION

 * Some basic utilities for writing DBIs in C.

 * Using the following functions...

 *

 * IW_CgiGetInput -- get DBI tags from the outside world

 *

 * IW_CgiValue -- get the value of an input tag

 * IW_CgiRewind -- prepare to iterate through tags

 * IW_CgiNext -- get next tag/value pair

 * IW_CgiNextValue -- get next value of given tag

 *

 * IW_CgiStartOutput -- prepare to output to the outside world

 *

 * will simplify writing your DBIs.

 *

 * IMPORTANT-NOTE!!!

 * The whole notion of "local" DBIs vs. "CGI" DBIs went away in

 * WebLib v.1.7. In an effort to make everything simpler, ALL

 * DBIs take their input -- and generate their output -- exactly

 * as CGI scripts do.

===

IW_Chunk.c - routines for outputting RFC822-style chunks

IW_ChunkspNew - Establish a chunk stream on a stdio stream.

 * Use it like this:

 *

 * IW_Chunksp *sp;

 * ...

 * sp = IW_ChunkspNew(stdout);

 * ...

 * IW_ChunkspField(sp, "FIELD", "%s", value);

IW_ChunkspFree - Free a chunk stream. This does not close the stdio pointer!

IW_ChunkspIndent - Private. Output the indentation prefix on fields, etc.

IW_ChunkspFieldV - The varargs backend to IW_ChunkspField() and IW_ChunkField(). Outputs a formatted field, with proper carriage-return escapes.

IW_ChunkspField - Output a formatted field, with proper carriage-return escapes.

 * Use it like this:

 *

 * IW_Chunksp sp = IW_ChunkspNew(stdout);

 * ...

 * IW_ChunkspField(sp, "fieldname", "%s %d", var1, var2);

 *

 * So this: IW_ChunkspField(sp, "Foo", "%s%d", "bar", 42);

 * Outputs this: Foo: bar42

 *

IW_ChunkspBeginGroup - Begin a chunk "group".

IW_ChunkspEndGroup - End a chunk "group".

IW_ChunkspBegin - Begin a chunk. If type is given, outputs the "X-TYPE: TYPE" line.

IW_ChunkspEnd - End a chunk.

===

IW_Conn.c - structure for a communication status

IW_ConnstageName - Map an IW_ConnS_XXX constant to a printable name.

IW_ConnNew - Return a new connection status object.

IW_ConnFree - Delete a connection status object.

IW_ConnSetStatusCmnt - Set the status code comment. The string is automatically duplicated, and any existing string is freed. You may set it to NULL, if you like.

IW_ConnStatusCmnt - Return the literal status code comment, as a string.

IW_ConnAnyStatusCmnt - Return the literal status code comment, or a fake one if none is available. The string you get back may exist in status memory; use it quick!

IW_ConnAddDataset - Add the given dataset web key (e.g., "1/234/GID") to the list of datasets we've seen.

IW_ConnHasDataset - Has the given dataset web key (e.g., "1/234/GID") been seen?

IW_ConnNumDatasets - Return the total number of datasets we've seen.

IW_ConnAddGranule - Add the given granule web key (e.g., "1/234/GID") to the list of granules we've seen.

IW_ConnHasGranule - Has the given granule web key (e.g., "1/234/GID") been seen?

IW_ConnNumGranules - Return the total number of granules we've seen.

==

IW_Hasht.c -- general-purpose hashtable

==

IW_Key.c - Converting between dataset/granule tags/keys in the IK layer (where they're binary) and the IMS/WWW layer (where they're in ASCII).

/* Conversion of archive tags to/from textual web representation: */

char *IW_ArchiveTagToWeb (IK_ArchiveTag, char *);

void IW_ArchiveTagFromWeb (IK_ArchiveTag, char *);

/* Conversion of dataset tags to/from textual web representation: */

char *IW_DatasetTagToWeb (IK_DatasetTag, char *);

void IW_DatasetTagFromWeb (IK_DatasetTag, char *);

/* Conversion of dataset keys to/from textual web representation: */

IK_SortKey *IW_DatasetKeyFromWeb (char *);

char *IW_DatasetKeyToWeb (IK_SortKey *,

 char *);

char *IW_DatasetKeyPartsToWeb(IK_ArchiveTag, IK_DatasetTag,

 char *);

char *IW_DatasetIdPartsToWeb (char *, char *,

 char *);

/* Conversion of granule keys to/from textual web representation: */

IK_SortKey *IW_GranuleKeyFromWeb (char *);

char *IW_GranuleKeyToWeb (IK_SortKey *,

 char *);

char *IW_GranuleKeyPartsToWeb(IK_ArchiveTag, IK_DatasetTag, char *,

 char *);

char *IW_GranuleIdPartsToWeb (char *, char *, char *,

 char *);

===

IW_Log.c - log information to the IK syslog

IW_LogDebug - Output debugging info. Use like printf.

IW_LogInfo - Output an informational message. Use like printf.

IW_LogNotice - Output a notice message. Use like printf.

IW_LogWarning - Output a warn message. Use like printf.

IW_LogErr - Output a error message. Use like printf. Note that it returns a convenient "error" value, so you can say: return IW_LogErr("can't open %s", filename);

IW_LogSetProgramName - Set the program name. The string must persist!

IW_LogSetVerbosity - Set the verbosity. Messages of priority 'level' and lower will be logged. 0 logs everything, -1 logs nothing.

===

IW_ODL.c - additional routines for dealing with ODL

IW_ODLReadFile - This function will read in the ODL label file specified in parameter, and build an ODL tree from it. If the "root" argument is non-NULL, then that wil be used; else, a new aggregate named "ROOT" will be created and returned.

IW_ODLAddStringParam - Add a string-valued parameter to the aggregate.

IW_ODLFirstChildGroup - Find the first child group of the "parent" aggregate with the name "groupname".

IW_ODLNextChildGroup - Find the next child group of the "parent" aggregate after "previous" with name "groupname". The parent argument makes the call identical to that of FindNextGroup.

IW_ODLJoinSequence - Composite a sequence string into a simple string.

IW_ODLParamStringified - Return the parameter's value as a newly-allocated string.

IW_ODLVectorFromSequence - A simpler, saner way to convert a sequence-string into a C vector (an array of char *)

IW_ODLVectorFree - Free the string vector returned by IW_ODLVectorFromSequence.

IW_ODLValueString - Like value->item.value.string, but safer since it skips the \n. Returns a pointer right into the data structure!

IW_ODLValueStringified - Format and return a string for the given scalar value. NOTE: This does NOT handle sequence strings.

IW_ODLWriteOptsClear - Dump the ODL to the given file as "chunks".

IW_ODLWriteChunkFields - Dump the ODL to the given chunk stream as a "chunk".

IW_ODLWriteChunk - Dump the ODL to the given chunk stream as "chunks".

IW_ODLWriteChunkGroup - Dump the ODL to the given file as a "chunk group".

==

IW_Str.c - Some string utilities for the WebLib C utilities.

IW_Strdup - Implements strdup, in case we don't have it.

IW_Stradd - Add to malloc'ed string. Reallocs if necessary.

IW_Strequal - Are the two strings equal?

IW_Strcasecmp - Case-insensitive strncmp. In case we don't have strcasecmp.

IW_Strsplit - Split string 's', using any of the characters of 'split' as delimiters (a la "strtok"). Pointers to the components are placed in 'argv', which must be large enough.

IW_Strdowncase -- convert string to lowercase

IW_Strupcase -- convert string to uppercase

IW_StrNew - Make a new string from a (char *).

IW_StrFree - Free a string

IW_StrBuf -- return the string buffer

IW_StrLen -- return the length of the string

=======================

IW_Util.c - Some utilities for the WebLib C utilities.

IW_UtilCheckUser - Check the authorization of this user.

IW_UtilSuUser - Become this user. Assumes that we are running with sufficient privilege to do this.

