How does inventory result ingest work?

A step-by-step analysis

Author: Eric Winter, Hughes STX

Date of last modification: Friday, November 01, 1996

How does it start?

The process of ingest of inventory result messages is one of the last major performance bottlenecks in the non-user interface portions of the EOSDIS V0 IMS code. We have to try and improve the performance of this critical subsystem while still maintaining compatibility with existing code.

In the current design, the process of ingest begins when an inventory search connection enters the IK_INVSRCH_INGEST state. The state action function for this state is IK_Nmfn.c::IK_IngestInvResults(). This function merely acts as a wrapper around the function which really does the ingest - IK_InInv.c::IK_InvResultIngest(). If an error occurs during ingest, the state action function returns the IK_CLIENTSYS_ERROR event; otherwise, it returns the IK_INGESTINV_SUCCESS event.

What happens during a nominal call to IK_Nmfn.c::IK_IngestInvResults()?

Summary: This is the state action function for the IK_INVSRCH_INGEST state.

Remove the NMDEBUG code from this function and all others.

A call is immediately made to IK_InInv.c::IK_InvResultIngest(), passing it a pointer to the newly-received tree. If -1 is returned, clear the global error codes, set the connection status to NM_CLIENT_ERRING, and return the event IK_CLIENTSYS_ERROR.

If ingest occurs correctly, NULL the inventory result and return the event IK_INGESTINV_SUCCESS. Apparently, this tree is deleted with RemoveAggregate() in the call to IK_InInv.c::IK_InvResultIngest().

What happens during a nominal call to IK_InInv.c::IK_InvResultIngest()?

Summary: This function is chartered to ingest the data in the inventory result tree and store it in a GDBM file. It returns 0 if ingest proceeds correctly, or -1 if an error occurs.

A signal handler for SIGCLD or SIGCHLD is installed for the dynamic packaging information child process. This code should be removed, since it is no longer used.

If not yet created, a file-scoped ODL AGGREGATE is allocated, with the name “Dataset Sync”. This group is used to hold incoming chunks of inventory results until all chunks for a single data set have been received. If the group cannot be created, set IK_ImsErrno to IK_ENOMEM, and return -1.

Check that the new tree has a first subgroup named “INVENTORY_RESULT”. If not, set IK_ImsErrno to IK_EINVAL, and return -1.

Check the INVENTORY_RESULT group for the DATA_CENTER_ID parameter with a valid value. If not found, set IK_ImsErrno to IK_EBAD_ODLTREE, and return -1.

Next is some file I/O debugging code that should be removed. Done.

The INVENTORY_RESULT group is then checked for one or more PACKAGE groups. If found, ingest each PACKAGE group with a call to IK_InInv.c::IK_IngestPackage(), and delete the package group from the tree.

The INVENTORY_RESULT group is then checked for one or more DATASET groups. For each DATASET group found, do the following:

Check to see if the DATASET group has a STATUS_CODE_COMMENT parameter. If so, set a flag. If not, check the DATASET group for a STATUS_CODE parameter. If found, and the value is an integer > 1 or the string literal “1”, set the flag.

If the comment flag is set, ingest the data set comment with a call to IK_InDsetStatCodeCmt.c::IK_IngestDsetStatCodeComment(), passing it the DATASET group as an argument. If an error occurs, log an error message and continue.

Check to see if the current chunk of the DATASET group contains the NUMBER_OF_GRANULE_HITS parameter. If so, this is the last/only chunk of granules for the current data set; call IK_InGran.c::IK_IngestGranules() to ingest the information that has been cached (using IK_InInv.c::get_held()), then call it again to ingest the data in this DATASET group. Is it done this way to avoid the need for transferring the granules from the last chunk to the granule cache? Note that if the NUMBER_OF_GRANULE_HITS parameter appears in a chunk earlier than the last chunk, all succeeding chunks will be ignored. What really happens when this parameter shows up earlier than expected?

If this is not the last chunk of the DATASET group, cache the current chunk with a call to IK_InInv.c::hold().

Find the next DATASET group for the loop.

When the loop is finished, delete the remains of the inventory result tree by calling RemoveAggregate().

Clear error globals (delete the clearing of errno), and return 0 if no errors remain, or return -1 if an IK_ImsErrno indicates an error occurred.

In summary, this function ingests a chunk of inventory results at a time, where a chunk can contain one or more complete or partial DATASET groups. Partial groups are cached locally until subsequent chunks complete the group, and then the entire data set is ingested together. Therefore, up to an entire DATASET group, plus one or more partial DATASET groups, can be held in memory at a time. Each pass through the state machine can add one chunk to one or more DATASET groups.

What happens during a nominal call to IK_InInv.c::hold()?

Summary: This function copies or moves data from a DATASET group into the result_sync group, which is an ODL tree used to temporarily hold inventory result information in memory until DATASET groups are complete, whereupon they are ingested.

The function takes a DATASET group as an argument.

A check is made to see if any chunks are currently held for the current dataset. The “held” group is retrieved by a call to IK_InInv.c::get_held().

If any chunks are currently “held” for this data set (i.e. get_held() returns an INVENTORY_RESULT group for this data set):

Move each GRANULE group from the DATASET group into the “held” group, using the ODL functions CutAggregate() and PasteAggregate(). This is done one granule at a time, and the current code ensures that all GRANULE groups are found, regardless of their location or order in the DATASET group.

The INVENTORY_RESULT group containing the “held” DATASET group with the new granule information is pasted back into the master “hold” tree, result_sync. Note that it was cut out of the result_sync tree by get_held().

The remains of the argument dataset group are discarded via RemoveAggregate().

If no chunks are currently held for this data set:

Create an INVENTORY_RESULT group to store the granule information in.

Find the parent group of the DATASET group being ingested. From it, copy the following parameters into the newly-created INVENTORY_RESULT group: MESSAGE_ID, DATA_CENTER_ID, STATUS_CODE, STATUS_CODE_COMMENT, UNMAPPED_FIELD.

Move the DATASET group into the new INVENTORY_RESULT tree after cutting it out of its parent group.

If an error has occurred, return -1. Otherwise, return 0.

What happens during a nominal call to IK_InInv.c::get_held()?

Summary: This function checks to see if any granules from the data set for the argument (a DATASET group) are currently cached. If so, a tree containing those granules is cut from the cache tree and returned to the caller.

The function takes a DATASET group as an argument.

Find and copy the DATASET_ID and DATA_CENTER_ID from the DATASET group.

Loop through each INVENTORY_RESULT group in the result_sync tree.

If the DATASET_ID of the DATASET group for this INVENTORY_RESULT group does not match the DATASET_ID for the argument DATASET group, go to the next INVENTORY_RESULT group.

If the DATA_CENTER_ID of the DATASET group for this INVENTORY_RESULT group does not match the DATA_CENTER_ID for the argument DATASET group, go to the next INVENTORY_RESULT group.

If both the DATASET_ID and the DATA_CENTER_ID match between the argument DATASET group and the current INVENTORY_RESULT group, then we have found the cached data for this DATASET; break out of the search loop. Does this mean that the same DATASET_ID can be used at different data centers? Otherwise, why would both have to match? It would be faster to check only the DATASET_ID.

If the appropriate INVENTORY_RESULT group for this data center and data set is found, cut it out of the result_sync tree.

Return a pointer to the cut tree, or NULL if no cached tree was found.

Would it improve performance if we created a cache tree for each connection? We would not then have to search through many INVENTORY_RESULT groups from other data centers in order to cache or retrieve data.

NOTE - this code check to see if the DATA_CENTER_ID and DATASET_ID match, in effect allowing two or more data centers to share a data set name. This is a hidden assumption that can cause problems.

What happens during a nominal call to IK_InInv.c::IK_IngestPackage()?

Summary: This function ingests the dynamic packaging information from a single PACKAGE group returned as part of an INVENTORY_RESULT message. The required information is retrieved from the ODL tree and stored in package files (actually ODL label files) in the package data subdirectory of the temporary data directory. Note that this function can create the package data subdirectory, as well as subdirectories for data centers, data sets, and files for packages.

This function takes a single PACKAGE group as an argument.

Clear the global IK_ImsErrno.

Call IK_SysConfig() to get the location of the temporary application data directory, and copy the string into a buffer, followed by the name of the package data subdirectory.

Create a subdirectory called “package” in the temporary data directory. Clear the global errno immediately afterwards, in case the subdirectory existed at the time of the mkdir() call. Change this code to check first to see if the subdirectory exists.

Find the DATA_CENTER_ID parameter from the PACKAGE group. If none is found, set IK_ImsErrno to IK_EBAD_ODLTREE, and return -1.

Find the DATASET_ID parameter from the PACKAGE group. If none is found, set IK_ImsErrno to IK_EBAD_ODLTREE, and return -1.

Find the PACKAGE_ID parameter from the PACKAGE group. If none is found, set IK_ImsErrno to IK_EBAD_ODLTREE, and return -1.

Create a data center-specific subdirectory under the temporary package data directory, using the DATA_CENTER_ID as the name. Note that the code checks for errno set to EEXIST, so processing will continue if the directory already exists. If another error occurs, set IK_ImsErrno to errno, and return -1. Change this code so that they two error codes are not equated. This is dangerous, since the possible values of the two error codes are not necessarily the same.

Create a soundex of the data set name, and use the soundex as the name of a data set-specific subdirectory under the data center subdirectory. Ignore the case of EEXIST.

If the package name is “*”, then this package information applies to the whole data set. True? If not “*”, then create a soundex of the package name. Use this soundex as the name of a package ODL file under the data set subdirectory. If the package name is “*”, then use the data set soundex as the name of the package ODL file.

Create a dummy root aggregate and paste a copy of the package data tree into it. Is this necessary?

Write the package tree copy to the ODL label file using WriteLabel(). Then delete the copy of the ODL tree.

Log a message and return -1 if an error occurred, or 0 if none.

Do we really need to clone the PACKAGE group prior to writing it to disk?

What happens during a nominal call to IK_InDsetStatCodeCmt.c::IK_IngestDsetStatCodeComment()?

Summary: This function ingests the data set status code and comments. This function makes extensive use of local data structures and file-scoped variables to manage the data. The most important is the DSSCLIST structure, which is defined in IK_InDsetStatCodeCmt.h as:

typedef struct datasetCodeCmtList {

 int code; /* dataset status code */

 char comment[IK_MAX_FIELD_SZ]; /* dataset status code comment */

 char datasetId[IK_MAX_FIELD_SZ]; /* dataset ID */

 struct datasetCodeCmtList *next;

} DSCCLIST;

This structure shows that the data set status codes and comments are stored in a linked list arrangement, with the data set ID distinguishing unique data sets. However, this assumes that if multiple data centers have the same data set ID, they return the same codes and comments. This will probably fail!

Another bug: when the file-scoped array p_DAACName is created, it allocates enough space to hold each data center name, by allocating (number of connections) times (IK_MAX_FIELD_SZ). No problem here, really. But when the data center name is copied into this array during this function, it uses p_DAACName + (connection index) as the target location for the copy, which is wrong! It should be p_DAACName + (connection index)(IK_MAX_FIELD_SZ). This approach will cause data center names to overwrite each other near the start of the p_DAACName array.

This function takes a single DATASET group as an argument.

Get the value of the STATUS_CODE parameter from the DATASET group.

Get the first value of the STATUS_CODE_COMMENT parameter from the DATASET group.

If neither is found, return 0. Why? This function should only be called if one of them is found. This return value hides potential errors.

Get the value of the DATA_CENTER_ID parameter from the parent of the DATASET group. Note that the parent group should be an INVENTORY_RESULT group. If the value is not found, return -1.

Get the connection index for this data center by calling IK_Nmint.c::IK_GetConnectionIndex() and passing it the DATA_CENTER_ID value. If an error occurs, return -1.

Use the connection index as an offset into the file-scoped p_DAACName array; copy the value of the DATA_CENTER_ID parameter to this point. Note - this code may be buggy. I think the offset is used incorrectly. It seems to copy the DATA_CENTER_ID value into a point a few bytes away from the start of the p_DAACName array. Check this out.

Get the value of the DATASET_ID parameter. If not found, return -1.

If there is no DSSCLIST structure already for this connection, create one with a call to IK_CreateDSCCLIST(). This code references the file-scoped p_DSCCLIST array; where is this array created? In IK_DSCCLISTPtrInit(), but where is this function called? In IX_Commst.c. Store a pointer to the new structure. Increment the number of comments for this connection (stored in the file-scoped array pi_count). Then set a flag which the UI uses to set up a button to allow access to the data set comments; this is done by calling IK_SetCmtBtnNtfStatus().

If the structure for this connection already exists, check to see if the data set status code and comment are duplicated (call IK_IsDuplicated()). If so, return 0. If not, append the new data set status code and comment, and increment the count of comments for this connection.

Copy the DATASET_ID into the DSCCLIST structure.

If available, copy the status code and comment into the DSCCLIST structure.

What happens during a nominal call to IK_InGran.c::IK_IngestGranules()?

Summary: This function performs the actual work of transferring granule data from ODL trees to GDBM files. This document does not discuss the BRIDGE_CONFIG-conditional code in the function.

This function takes a single DATASET group as its argument. Verify it is not NULL.

Initialize the granule key list (whatever that is).

Allocate a new IK_GranulP structure, with a trailing buffer of IK_MEMBUFSIZ bytes. This structure contains an IK_Granule structure into which the bulk of the actual granule data is copied. The structure is followed by the buffer, into which all of the dynamically allocated data is placed. This approach is taken to ensure that all of the granule data is contiguous in memory, so that it can be stored using a single gdbm_store() call. The trailing buffer of IK_MEMBUFSIZ bytes starts out at 4096 bytes.

Calculate and store the size of the new structure and buffer.

Extract the DATASET_ID parameter value from the DATASET group, and map it to a data set tag (call IK_MapDatasetNameToTag()).

Extract the DATA_CENTER_ID parameter value from the DATASET group, and map it to a data center tag (call IK_MapArchiveNameToTag()).

Now loop through each GRANULE group in the DATASET group. For each granule:

Clear the IK_GranulP structure and its trailing buffer.

Set the aligned_data member of the IK_GranuleP structure to point to the start of the buffer, just past the end of the IK_GranulP structure.

Initialize the nbytes member of the IK_GranuleP structure to the size of the structure at the head of the structure/buffer combination, since the trailing buffer is still empty.

Copy the data set and archive tags retrieved above into the IK_GranuleP structure.

Find the GRANULE_ID parameter and copy its value (a string) into the IK_Granule part of the IK_GranuleP structure.

Find the START_DATE parameter and format its value (a date) using ODLFormatDateTime(), then place the formatted date into the start of the buffer after the IK_GranuleP structure. Save the number of bytes in the formatted date. Then convert the pointer to the formatted date to an offset from the aligned_data member of the header structure. Store the offset in the start_date member of the IK_Granule part of the header structure. Note that no memory allocation is done here - the formatted date is stored in the buffer, and the header structure records the offset into the buffer for the date. Next, call IK_ALIGN() with the size of the formatted date string. That macro looks like this:

#define IK_ALIGN(n) (sizeof(void *) * ((((n) + 1) / sizeof(void *)) + 1))

The pointer to the start of the aligned data, and the count of bytes used in the buffer, are then incremented by this adjusted amount. Again, no memory is allocated here - just some arithmetic being performed. The final effect is to add a few bytes between the end of the formatted date in the buffer, and whatever comes after it. But why is this done? It seems to ensure that each data item copied into the buffer will start at an offset which is a multiple of sizeof(void *). Why?

Perform the same sequence of actions for the STOP_DATE parameter.

Initialize the browse type in the header structure to IK_NO_BROWSE. Then look for the BROWSE_TYPE parameter. If found, extract the value (a string). If the first character of the string is ‘N’, set the browse type to IK_NO_BROWSE; if ‘Y’, set the browse type to IK_INTEGRATED; if the string is “FTP_ONLY”, set the browse type to IK_FTP. Then set the granule mark structure to record the browse type. No memory allocation here.

Find the BROWSE_PRODUCT_DESCRIPTION parameter, if any, for the GRANULE group. If none is found, look for one in the parent DATASET group. If found, convert the ODL sequence of strings to a contiguous list with a call to IK_ODLetc.c::IK_Sequence2List(). Then create an offset into the granule buffer for the browse product description by using IK_RELOC(). Note - each call to IK_Sequence2List() involves memory allocation calls!

Next is a call to granule_list2c(), but what does that do? According to the function comments, “This function moves a list into a C structure. It copies a NULL terminated list of null-terminated strings into the granule structure. More memory is allocated if it is needed.” . Calls to realloc() can occur during this function.

Find the CAMPAIGN parameter; look first in the DATASET group, and if not found there, in the GRANULE group. If found, copy the string to the IK_Granule structure. Note that this buffer is statically allocated in the structure; no dynamic allocation is needed.

Look in the GRANULE group for the IMAGE_ID parameter. If found, copy the string to the IK_Granule structure. Note that this buffer is statically allocated in the structure; no dynamic allocation is needed.

Look in the GRANULE group for the PROCESSING_LEVEL parameter. If not found, look for it in the DATASET group. If found, copy the string to the IK_Granule structure. Note that this buffer is statically allocated in the structure; no dynamic allocation is needed.

Initialize the day/night flag to IK_BOTH. Look in the GRANULE group for the DAY_NIGHT parameter. If not found, look for it in the DATASET group. If found, examine the first character of the string. If the first character is ‘D’, set the day_night member to IK_DAY. If the first character is ‘N’, set the day_night member to IK_NIGHT.

Look in the GRANULE group for the COMMENT parameter. If not found, look for it in the DATASET group. If found, treat it like the BROWSE_PRODUCT_DESCRIPTION, i.e. pack the array of strings into the trailing buffer.

Look in the GRANULE group for the SENSOR_NAME parameter. If not found, look for it in the DATASET group. If found, treat it like the BROWSE_PRODUCT_DESCRIPTION, i.e. pack the array of strings into the trailing buffer.

Look in the GRANULE group for the SOURCE_NAME parameter. If not found, look for it in the DATASET group. If found, treat it like the BROWSE_PRODUCT_DESCRIPTION, i.e. pack the array of strings into the trailing buffer.

Look in the GRANULE group for the PARAMETER parameter. If not found, look for it in the DATASET group. If found, treat it like the BROWSE_PRODUCT_DESCRIPTION, i.e. pack the array of strings into the trailing buffer.

Look in the GRANULE group for the PACKAGE_ID parameter. If not found, look for it in the DATASET group. If found, treat it like the BROWSE_PRODUCT_DESCRIPTION, i.e. pack the array of strings into the trailing buffer. Then add space (i.e. increment the buffer pointer and offset) after the strings for a flag for each package to indicate whether or not it is selected; use one IK_BOOLEAN per package.

Look in the GRANULE group for the GLOBAL_GRANULE parameter. If not found, look for it in the DATASET group. If found, set the granule area coverage type to IK_GLOBAL.

Look in the GRANULE group for the POINT_LOC group. If found, extract the values of the LATITUDE and LONGITUDE parameters and store them in the IK_Granule structure, then set the coverage area type to IK_POINT.

Look in the GRANULE group for the POLYGON_LOC group. If found, extract the IK_NPOLYSIDES values of the LATITUDE and LONGITUDE parameters and store them in the IK_Granule structure. Then extract the values of the CENTROID_LAT and CENTROID_LON parameters. Clear the pole_inside flag, then look for the POLE_INCLUDED parameter. If found, set the pole_inside flag to be the first character of the value of the parameter. This is an odd way to do things! Then set the coverage area type to IK_POLYGON.

Look in the GRANULE group for the RANGE_LOC group. If found, extract the values of the NORTH_LATITUDE, SOUTH_LATITUDE, EAST_LONGITUDE, and WEST_LONGITUDE parameters and store them in the IK_Granule structure. Then set the coverage area type to IK_RANGE.

Now mark this granule as visible by setting the visible mark flag to IK_VISIBLE.

Determine the offset to the end of the used area in the buffer, then convert all offsets into pointers using the IK_FIXUP_LIST and IK_FIXUP macros.

Set all the package selection flags to IK_FALSE.

Build the sort key for this granule by calling IK_BuildGranuleKey().

Note that after all of the data has been stuffed into the buffer, all of the offsets are converted into actual pointers.

What happens during a nominal call to IK_PutGranule()?

This function takes a pointer to an IK_Granule structure as an argument.

Cast the IK_Granule pointer to an IK_GranuleP pointer to access the private data area.

Build the granule key using the archive and data set tags, and the granule ID.

Copy the granule key to the database lookup key.

Set up the database lookup content key: set the dptr to refer to the private granule structure, and the content size to the nbytes member of the header structure. Are we therefore assuming that the trailing buffer is already aligned? I think so…

No. At this point, convert all of the data pointers to offsets. But wasn’t this already done in IK_IngestGranules()? The following data is converted to offsets: start_date, stop_date, package_selected, comment, sensor_name, source_name, parameter, browse_desc, package_id.

The modified granule structure and buffer are then written to the database with gdbm_store().

All offsets are then converted back to pointers using IK_FIXUP and IK_PTR_FIXUP_LIST.

So the net effect is: during the initial part of ingest, when data is being retrieved from the ODL tree, all pointers are converted to offsets. When complete, all offsets are converted into pointer. Then, if storing, all pointers are converted to offsets, the data are stored, then all offsets are converted back to pointers. That’s 4 conversions. Is there a way around this?

IK_PutGranule() seems to be called for every granule, whether it is already in the database or not! One problem seems to be - the entire granule group is ingested prior to checking to see if the granule is already in the database. In effect, the latest copy of the granule received always takes precedence over an existing copy in the database.

The IK_Granule structure must always have valid pointers during normal client operations. The pointers only need to be converted into offsets when the data is written to the database. However, to ensure that all of the data is contiguous in memory, offsets are used during the process of ingest.

What happens during a nominal call to IK_GetGranule()?

This function takes a pointer to a granule sort key and a pointer to a pointer to an IK_Granule structure (fill it in with the fetched results).

Assuming a valid granule pointer and key pointer were supplied, copy references to the key and its size into the database key structure - use them as the key for the fetch.

Assuming the granule database file is open (it’s left open during execution?), call gdbm_fetch() to retrieve data on the granule specified in the sort key.

If the granule was not found, return an error status and set IK_ImsErrno to IK_ENOENT.

If found, convert all of the fetched offsets to pointers. Do this for start_date, stop_date, package_selected, comment, sensor_name, source_name, parameter, browse_desc and package_id.

Set the pointer argument to point to the newly-fetched granule structure, and return 0.

So basically this function retrieves an IK_Granule structure and its trailing data in a contiguous block from the database, and converts all of the offsets to true pointers before passing the data structure back to the caller.

What happens during a nominal call to IK_InGran.c::granule_list2c()?

Summary: This function moves a list into a C structure. It copies a NULL terminated list of null-terminated strings into the granule structure. More memory is allocated if it is needed.

This function takes several arguments: a pointer to an IK_GranulP structure, its size, an array of string pointers, and number of bytes in the strings. The string array is a set of string pointers, followed by a null pointer, followed by the strings themselves.

Calculate the “aligned” size of the string list by calling IK_ALIGN().

If the aligned string bytes, plus the number of bytes used in the granule buffer, is greater than the size of the granule buffer, use realloc() to extend the granule buffer by IK_MEMBUFSIZ bytes. Note - this approach assumes that adding IK_MEMBUFSIZ bytes will always be enough. It might not be! If the stretch fails, free the granule buffer (bad idea here?), null it, and set IK_ImsErrno to IK_ENOMEM.

Call IK_RELOC_LIST to convert each of the string pointers to an offset from the start of the list.

Copy the entire string list (offsets and strings) into the granule heap area.

Adjust the count of bytes used in the granule buffer, and the heap pointer, by the aligned size of the string table.

Free the original string list.

This function basically just copies a specially-formatted array of strings into the buffer at the end of an IK_GranulP structure. Note the danger in the way the buffer is stretched - if IK_MEMBUFSIZ bytes is not enough, the program will write into memory after the end of the allocated buffer, with unpredictable results.

	� PAGE �12�

1.0	Eric winter, Hughes STX	� DATE �10/11/96� � TIME �10:38 AM�

