The Task Manager


Replacing the V0 poller


Author: Eric Winter, Hughes STX


Date of last modification: Tuesday, November 19, 1996


Introduction


This document describes the design and implementation of the Task Manager. The Task Manager was developed as a replacement for the existing V0 IMS communication poller code, and builds on the existing V0 IMS State Machine, with the aim of improving the speed and efficiency of the V0 communication software.


Overview of the Task Manager


The Task Manager


The Task Manager must coordinate the execution of each Connection in an efficient fashion. The overall goal is to make the processing of information as efficient as possible, to improve the user perception of system performance. One way to approach this objective is to minimize the delays between the moment data is received and the moment it can be observed by the user. In short, the data should be processed as soon as it is received.


Each Connection will have a Task assigned to it. Each Task is composed of one or more Task Segments. A Task Segment is a group of State Machine States that can be executed in sequence with no intermediate delays. Only one Task Segment is active per Task at any time. The Task Dispatcher determines which Task executes at any given time. The Task determines which Task Segment will execute when that Task executes. In effect, a two-layer execution control mechanism will be provided that improves execution efficiency at coarse- and fine-grained levels.


The Task Manager itself must exist for the entire client session. The Task Manager should be created at the start of the client session. As Connections are opened during the course of a Transaction, they are registered with the Task Manager for management. As Connections are closed, they are removed the control of the Task Manager. When no Transaction is underway, the Task Manager will not have any Connections under its control.


The Task Dispatcher


How it talks to existing code


The Task Dispatcher is the high-level controlling code of the Task Manager. To ensure that existing code is not changed, the Task Manager itself is contacted during each call to the existing poller invocation function, IK_CauseStateTransition(). The Task Dispatcher will then be invoked by the Task Manager. The Task Dispatcher will then determine which Task to execute, and invoke that Task. The Task will then determine which Task Segment to execute, and invoke that Task Segment, leading to the execution of the SAFs for each of its constituent States. The flow of control is thus: IK_CauseStateTransition()->Task Manager->Task Dispatcher->Task->Task Segment->SAF.


How will the Task Dispatcher control which Task is executed?


The Task Dispatcher must ensure that no single Connection dominates the user perception of performance. In other words, the processing of one Connection should not be at the constant expense of others. The Task Dispatcher will therefore maintain an identifier (an array index, pointer, or equivalent) for the Task most recently executed. When next invoked, the Task Dispatcher will try to execute the next available Task occurring after the most recent Task in the list of available Tasks. In this context, “available” is interpreted as the ability to perform a useful function.


The Task Dispatcher is best illustrated by an example. Consider a search to three data centers simultaneously. During some invocation of the Task Manager, the Task Dispatcher causes the Task for Connection 1 to be executed. The next time the Task Manager is invoked, the Task Dispatcher will try to execute the Task for Connection 2 (assuming that Task has an appropriate Task Segment available for execution). If Task 2 cannot perform any useful work, the Task Dispatcher attempts to execute Task 3. On the next invocation,  the Task Dispatcher will try to execute the Task for the next Connection - Task 3 if the previously executed Task was Task 2, and Task 1 if the previously executed Task was Task 3.


In the initial design, this is all the Task Dispatcher needs to do: try to invoke the next available Task at each invocation, and cycle back to the head of the Task list when the end is reached. The net effect is that the Task Dispatcher will loop through each Task until it finds a Task that can do something. That Task will then be executed, and control will return to the upper levels of the code. If no executable Task is found during an invocation of the Task Dispatcher, control is surrendered with no State Action Functions having been executed. Upon the next Task Dispatcher invocation, the check for an executable Task will commence with the Task immediately following the last executed Task.


Tasks


Controlling a connection


Each Connection will be controlled by a single Task. A Task will act as a front-end to the State Machine States which govern the progression of a Connection. From any given State, only a small number of successor States are possible. The Task consists of the entire sequence of States from the opening of a Connection until its termination. The actual path through the possible States can vary from Connection to Connection within a Transaction. For instance, a Task which governs a Connection to a data center which is off-line would proceed from the BEGIN state to the CONNECT state, then to the CLOSE and TERMINATE states. A Task for a “good” connection would proceed from BEGIN to CONNECT, thence to SEARCH, etc.., through to TERMINATE when the search successfully concludes. The Task must therefore maintain knowledge of the current state of the connection. Fortunately, this data is currently maintained in the CONNECTION_INFO structure.


Task Segments


How is a Task Segment determined?


There are many valid paths through the State Machine for a given Transaction. It is impractical to list all possible paths for use by the Task Manager. A better approach would be to analyze the possible paths and note which States occur most frequently in similar contexts. One such context is that of the first State in a Task Segment. If the first State in a Task Segment is a member of a small subset of all possible States, then the determination of the end of a Task Segment is straightforward: if the next State for this Connection is one of these States which always starts a Task Segment, then the current Task Segment must end. These States will be referred to as Task Segment Initiator States (TSIS). The next time this Task is executed, the next State in the sequence is executed, and this State will always be the first State in a new Task Segment.


In nearly all cases, Task Segments start on BEGIN, CONNECT, LISTEN, or TERMINATE states. For integrated browse, Task Segments can also start on the READIMAGE state. For directory searches, Task Segments can also start on the GCMDCOMMN state. One approach might therefore be to maintain a list of TSIS for each transaction type. After each State Action Function is executed, use the current State and the EC to calculate what the next State should be. If the next State is not a TSIS, then execute the State Action Function for the next State. Continue until the next State is a TSIS. Note that this approach will require no changes in the current SAFs. The Task Manager replaces the existing poller, but uses its interface.


Implementation


Task Manager


The Task Manager routines are the entry points to the Task Manager and its components. The Task Manager must perform the following functions:


Create/initialize itself


Dispose of itself


Add new Connections to be managed


Remove Connections from management


Invoke the Task Dispatcher to update the Tasks


Note that the Task Manager will deal only with the Task Dispatcher and Tasks. It does not know about Task Segments, and does not manipulate them or refer to them in any way. Note also that a program will have only a single Task Manager, which will be responsible for all Connections maintained by that program. The Task Manager will be created when the program starts up, and deleted when the program ends. The initiation and deletion functions must therefore be called outside of the main program event-processing loop.


The Task Manager needs to maintain only a few data items:


A list of Tasks under management


An identifier for the most recently executed Task


The Task list can be easily implemented in one of two ways:


An array of known size


A linked list


A data structure to implement the Task Manager using an array of Tasks might look like this:


typedef struct IK_TaskManager {





	/* The maximum number of manageable Tasks */


	unsigned int ui_maxTasks;





	/* Array of pointers to the Tasks under management */


	IK_Task **aptask_managedTasks;





	/* Index of the most recently executed Task */


	unsigned int ui_lastExecutedTask;





} IK_TaskManager;





Note that with this approach, the Task array will contain NULL entries for empty Task slots. The number of Tasks under management at any time can then be calculated dynamically by counting the number of non-NULL entries. Note also that the ability to manage and unmanage Tasks dynamically can cause “holes” to appear in the array of managed Tasks. The code should account for this possibility by ensuring that any Task pointer is non-NULL.


The pseudocode for the Task array-based Task Manager functions described above is given below:


IK_TaskManager IK_TaskManager_New(IN: number of Tasks to manage):


Validate the requested number of Tasks to manage.


If invalid, return NULL.


Allocate a IK_TaskManager structure.


If structure could not be allocated, return NULL.


Allocate the array of pointers to Tasks to manage.


If array could not be allocated, free memory and return NULL.


Store the maximum Task count and Task pointer array pointer.


Initialize the previous Task index to -1 (no Task executed yet).


Return the new Task Manager.





IK_BOOLEAN IK_TaskManager_Delete(IN: Task Manager):


Validate the Task Manager.


If invalid, return IK_FALSE.


For each Task,


	delete the Task.


Free memory for Task pointer array.


Free memory for the Task Manager data structure.


Return IK_TRUE.





IK_BOOLEAN IK_TaskManager_ManageConnection(IN: Task Manager, CONNECTION_INFO structure)


Validate the Task Manager and input structure.


If invalid, return IK_FALSE.


If no more Tasks can be managed, return IK_FALSE.


Create a Task for the input structure.


If Task could not be created, return IK_FALSE.


Store the CONNECTION_INFO data in the Task.


Store the new Task in the managed Tasks pointer array.


Return IK_TRUE.





IK_BOOLEAN TaskManager_UnmanageConnection(IN: Task Manager, CONNECTION_INFO structure)


Validate the Task Manager and input structure.


If invalid, return IK_FALSE.


Search the array of managed Tasks for the Task which controls the Connection defined by the input structure.


If found,


delete the Task.


Return IK_TRUE.


Else,


	return IK_FALSE.





An alternative data structure which more easily accommodates dynamic Task management is a “ring” (a linked list connected end-to-end). The Task Manager data structure would then look like this:


typedef struct IK_TaskManager {





	/* Pointer to a ring of Tasks */


	IK_RingList *pringlist_managedTasks;





	/* Pointer to list node for last Task executed */


	IK_ListNode *plistnode_lastExecutedTask;





} IK_TaskManager;





In this approach, a IK_RingList is a data structure composed of a doubly-linked list of IK_ListNode structures. The last node in the list is linked to the first node in the list, providing the linked list with its ring-like behavior. Data structures to implement these concepts are provided below:


typedef struct IK_ListNode {





	/* Pointer to data at this node */


	void *pv_nodeData;





	/* Pointer to next and previous nodes */


	struct IK_ListNode *plistnode_next;


	struct IK_ListNode *plistnode_prev;





} IK_ListNode;





typedef struct IK_RingList {





	/* Pointer to an arbitrary head element */


	IK_ListNode *plistnode_head;





} IK_RingList;





A separate count of managed Tasks does not need to be maintained; it can be easily determined when needed by looping through the ring, starting at the head node. Additionally, the code does not need to worry about special-case processing for the last Task in a list - the ring structure will automatically loop through the end to the head of the list. For simplicity, Tasks will always be added at the end of the List, i.e. just prior to the head node. The functions for managing and unmanaging Tasks then become simple list insertion and deletion operations. The pseudocode for the Task Manager functions now becomes:


IK_TaskManager IK_TaskManager_New:


Allocate a Task Manager.


If allocation not done, return NULL.


Allocate a IK_RingList for the Task Manager.


If IK_RingList cannot be created, free memory and return NULL.


Save IK_RingList.


Initialize pointer for last executed Task to NULL.


Return the new Task Manager.





IK_BOOLEAN IK_TaskManager_Delete(IN: TaskManager to delete):


While Tasks exist in the Task ring,


	delete the Task and the ring node for the Task.


Free memory for TaskManager structure.


Return IK_TRUE.





IK_BOOLEAN TaskManager_ManageConnection(IN: Task Manager, CONNECTION_INFO structure)


Validate the Task Manager and input structure.


If invalid, return IK_FALSE.


If no more Tasks can be managed, return IK_FALSE.


Create a Task for the input structure.


If Task could not be created, return IK_FALSE.


Create a list node for the new Task.


Store the new Task in the managed Tasks ring list.


Return IK_TRUE.





IK_BOOLEAN TaskManager_UnmanageConnection(IN: Task Manager, CONNECTION_INFO structure)


Validate the Task Manager and input structure.


If invalid, return IK_FALSE.


Search the ring list of managed Tasks for the Task which controls the Connection defined by the input structure.


If found,


delete the Task and the list node.


Return IK_TRUE.


Else,


	return IK_FALSE.





Task Dispatcher


The Task Dispatcher will encapsulate the code and data required to control which Task is executed during an invocation. Since the Task Dispatcher is closely tied to the Task Manager (and constitutes its primary functionality), the Task Dispatcher will be implemented as a function within the Task Manager. The function will be called IK_TaskManager_DispatchTask(). This function will be invoked from the current function IK_CauseStateTransition().


IK_TaskManager_DispatchTask(IN: Task Manager):


Get the identifier of the last Task executed.


For each Task, starting with the current Task,


If this Task can do something,


execute the Task for the index,


break.


Save the identifier of the executed Task for use in the next invocation.





Tasks


A Task controls a single connection. It stores a pointer to the CONNECTION_INFO structure for the Connection it manages, and therefore has access to all of the data available to the current State Machine code. A Task must also have a mechanism for executing its constituent Task Segments. The next State to execute is always stored in the state member of the CONNECTION_INFO structure. When a Task is executing, it first executes the SAF for this State. It then uses the State and the EC returned from the SAF to calculate what the next State will be. If the next State is a TSIS, then end the execution of the current Task Segment. Otherwise, proceed to the next State and execute its SAF. The pseudocode for this approach would look something like this:


Boolean IK_Task_DispatchTaskSegment(IN: Task):


Fetch current State for this Task.


Execute the SAF for the current State.


Calculate the next State for this task, based on the current State and the EC returned from the SAF.


While the next State is not a TSIS,


	update the State.


	Execute the SAF for the current State.


	Calculate the next State.


Return TRUE.





For any given Transaction type, the States which are TSIS are fixed and known a priori. A simple table will be sufficient to store this information. Each of these tables will consist of a simple data structure which contains a count of TSIS and an array containing the State codes for each TSIS. The data structures would look something like this:


typedef struct IK_TSISList {





	/* Transaction type */


	IK_SEARCH_TYPE transactionType;





	/* Number of TSIS States for this Transaction type */


	unsigned int ui_numTSIS;





	/* Array of TSIS State codes for this Transaction type */


	int *pi_tsisStateCodes;





} IK_TSISList;





When a Task is created for a Connection, a TSISList will be created, and maintained as part of the Task structure. The final Task data structure will look like this:


typedef struct IK_Task {





	/* Connection data for connection controlled by this Task */


	CONNECTION_INFO *pCI;





	/* List of TSIS for this Transaction type */


	IK_TSISList *ptsislist;





} IK_Task;





The code which creates the IK_TSISList structures will be encapsulated in a function with a single input argument which specifies the type of Transaction to create a IK_TSISList structure for. Each IK_Task will have an independently-created IK_TSISList. This approach will more easily allow the manipulation of multiple simultaneous Transaction types, should this become necessary in the future. The pseudocode for such a function will look like this:


IK_TSISList_New(IN: IK_SEARCH_TYE transactionType):


Validate transaction type.


If invalid, return FALSE.


Create IK_TSISList structure.


Store transaction type in IK_TSISList.


Look up and store the TSIS count for this Transaction type.


Duplicate the array of TSIS State codes for this Transaction type.


If the array cannot be duplicated, return FALSE.


Return TRUE.





The master tables of TSIS codes and counts are static data items - they will not change unless the State Machine itself changes. The latter can only happen when States are rearranged, States are added or deleted, or new Transaction types are added. This data will be stored in explicit form in the IK_TSISList.c source file, similar in fashion to the State Tables stored in IK_Nmtbl.c.





	� PAGE �1�





	Eric winter, Hughes STX	� DATE �11/19/96� � TIME �7:25 AM�











