Analysis of Design Approaches for V0 Communication Software Overhaul: Risks and Potential Benefits

Preface

Purpose of this document

This document presents a thorough analysis of alternative approaches considered during the pre-design analysis phase for the V0 IMS communication software overhaul project. The modifications will result in changes to various parts of the code with the aim of improving performance, portability, maintainability, and robustness.

Who should read this document

This document is intended to be read by NASA and contractor personnel involved in the analysis, planning and execution of modifications to the EOSDIS Version 0 IMS (Information Management System) communication code.

The reader is assumed to be experienced with the EOSDIS V0 IMS client and server systems; at a minimum, the reader should have used the V0 client several times. Knowledge of some or all of the following topics will also be useful: the UNIX operating system, the system call API for UNIX, the C language, TCP/IP network communications, and the X-Window system. Knowledge of third-party code used in the V0 system, e.g. ODL and the GNU database manager, is helpful as well.

Introduction

The prototype design

Overall structure

The layered approach

The design of the V0 prototype utilizes a layered approach, in which low-level layers of code provide functionality to higher levels of code. At the bottom of the stack is the “IK” layer. In this case, the “K” refers to “kernel”, since the code in this layer deals primarily with the interface to the operating system-level resources, such as the network and mass storage. The next higher level is the “IC” layer, where “C” refers to “common”. Code in this layer is intended to be common to any type of user interface; it was initially developed to share code between X-Window (graphical) and text-based clients. The top layer is the primary user interface layer. Currently, two major interfaces are available. One is built using the X-Window system. The result is a graphical user interface (GUI), embodied in the “IX” layer (where the X refers to the X-Window system). The other major interface is the EOSDIS Version 0 World-Wide Web gateway, which provides an interface accessible through standard Web browsers. This gateway uses a “IW” layer to perform gateway functions and drive the poller.

Managers

The IK layer is further subdivided into “managers”. Managers are sections of code which control access to a related family of functions and/or data. For example, the Network Manager is charged with maintenance of TCP/IP connections and the associated state machine, and the polling mechanism which drives the state machine, while the Data Manager handles the ingest, local storage and later retrieval of search results. This approach allows compartmentalization of data and functionality, which facilitated the rapid code development required in the early stages of the project.

The user interface

The user interface is the mechanism by which all user input is gathered and all program results are displayed. For the purposes of this project, the part of the user interface of greatest interest is that which controls the contents of the communication status screen. This screen provides feedback to the user on the state of each connection during a search. Each connection to a data center can be in any one of a number of states at any time, depending on the type of the search and the status of the connection. The communication status screen is one of the most important avenues of feedback to the user - it is the most prominent indicator of the end-to-end performance of the system. Any changes which improve the user perception of performance when this screen is displayed are beneficial to the system as a whole.

Gateways

The sub-UI portions of the V0 code were extracted and used to form the core of a new type of user interface - a gateway. The gateway approach allows arbitrary systems to act as V0 clients, or, in the opposite direction, as V0 servers. This approach requires code which translates messages from the V0 format (Object Description Language - ODL) to the native format for the system in question, and back again if needed. A gateway can translate requests in one direction, or both. For instance, a uni-directional gateway could allow the V0 client to access data from servers which operate under a completely different operating system and database arrangement, using different keywords and search criteria formats. The gateway takes care of translating ODL search messages into the native format, and sending the translated request to the foreign server. Results from the foreign server are then translated back into ODL messages for transmission to the V0 client. The client sees this gateway as just another server. In this sense, each existing V0 server is a gateway, which translates between the V0 protocol and legacy database systems. Alternatively, a foreign system (such as the World-Wide Web) can use its own interface (such as an HTML form displayed by a Web browser) to formulate a native query, which the gateway translates into ODL format and sends to an existing V0 server. The V0-format results are then translated by the gateway back into the format of the foreign system, e.g. HTML. The ultimate gateway acts in both directions - allowing foreign clients and servers to work with V0 clients and servers. Such a gateway would act as both a client and a server to each system.

The communication layer

Transactions

A transaction is a user-initiated sequence of events which performs a specific function. A transaction involves connecting to and communicating with servers at remote data centers, and ingesting and displaying the results returned from those servers.

Directory search

A directory search allows the user to obtain high-level descriptive information on individual data sets. A directory search is implemented as a two-stage process. The user provides the search criteria normally, via the search screen. The query is then sent to the appropriate data centers. The search results do not, however, contain the data of interest. The directory search result message instead contains a DIF ID (Directory Interchange Format Identifier). The DIF ID is then used to perform a query to the GCMD (Global Change Master Directory) using a direct SQL connection to the GCMD database server. The result of this second query (a detailed data set description) is then displayed to the user as the result of the entire directory search transaction. Directory searches to multiple data centers proceed in parallel.

Inventory search

An inventory search allows the user to search for individual granules of data. This is the most detailed search type available within the V0 IMS, and also the search type which typically returns the largest volume of response data. The results of an inventory search typically consist of one or more collections of granules, where each collection of granules is grouped by the data set of the granule. It is not unusual for an inventory search to return information on thousands of granules over dozens of data sets. Inventory searches to multiple data centers proceed in parallel.

Order

An order (formerly known as product request) transaction allows the user to specify individual packages of data to obtain from the data centers. A package is a collection of one or more (often many more) granules. An order is executed after an inventory search by selecting one or more granules to order; the system then allows the user to specify which collection of packages contain all of the granules of interest. Order submissions to multiple data centers proceed in parallel.

Integrated browse

An integrated browse transaction allows the user to download a browse image for a given granule and view it on the browse screen of the V0 client. Controls for panning, zooming, and contrast are provided to aid in the viewing process. Controls are also provided on the browse screen to mark the granule for order. Requests for multiple integrated browse images are performed in sequence.

FTP browse

An FTP browse transaction allows the user to request the staging of one or more browse images for later download. This could be done if the user requests a large number of images, or wishes to use a non-V0 IMS program for viewing the images. FTP browse requests to multiple data centers are performed in sequence.

Guide

The guide search mechanism allows the user to search for a variety of detailed information on sensors, data sets, and other topics of interest. However, guide searches are executed using a different, self-contained mechanism, wholly separate from all other queries in the system. Guide searches will not be discussed further in this document.

Connections

Overview

Each major V0 IMS transaction type follows the same general pattern during a nominal request:

Open the connection.

Transmit the request.

Listen for the response and read it in.

Ingest the response and perform ancillary processing.

Close the connection.

This sequence of events is illustrated in Figure 1.

� EMBED Word.Picture.6 ���

Figure 1: A nominal inventory search state sequence.

Opening the connection

For any given search type, a connection to a data center always starts in the same fashion - opening a TCP/IP socket to the server at the desired data center. A local socket is created first, using the socket() system call. However, this socket is unconnected, and therefore cannot send or receive data (yet). The IP address and TCP port number of the server are then used as arguments to the connect() system call, which executes the three-way handshake required to initiate a TCP/IP stream connection between the local socket and the server on the remote host. A stream-type socket connection is used (as opposed to a datagram-type connection) for several reasons:

The client and server both need to read from and write to each other, so a bi-directional connection is needed.

All communication between the client and the server is in the form of variable-length text messages (actually formatted ODL labels). Since the message size is not fixed, and in fact can vary widely, a stream connection is the most efficient connection type.

The client and server must ensure that their messages are received and processed in order, to ensure the integrity of the client/server protocol is maintained. A stream connection maintains this arrangement by ensuring that messages are delivered in the proper order.

Normally, a call to connect() is a blocking operation. That is, the connect() system call does not return to the caller until the connection is complete, or an error occurs, or a signal is received. If the call blocks when the program has no other work to perform, this arrangement is an efficient use of system resources; CPU cycles are not wasted on unproductive polling that would be necessary for a non-blocking call. However, when the call blocks while the program has other pending work to perform that is delayed by the blocking call, serious performance problems can arise. The server could be unavailable for a variety of reasons:

The server process is not running.

The server process is too busy to respond.

The server host is down.

The network connection to the server host is unavailable.

Regardless of the reason, a call to connect() can lead to one of three results:

A successful connection - control is returned to the caller after a variable delay.

An error is returned - an error condition at the client and/or server ends of the intended connection has been detected. This condition also arises when a signal (a kernel-level, flag-type communication mechanism) is received (but not caught) during the connection operation, and the system call is not automatically restarted.

A block - the connect() call waits until the connection goes through. This state can be interrupted by receipt of a signal, which can force a blocking call to return an error condition; this result is equivalent to result 2 above.

The connect() call will not block indefinitely. After a system-defined period has elapsed without a connection, the connect() call will return an error. This timeout value is implemented as a kernel configuration parameter, and is not modifiable by the V0 client software. This fixed value is circumvented by implementing an application-level timeout using the alarm() system call. Using this call, the program can specify an arbitrary timeout value (to a resolution of one second) for the connection attempt. If the specified interval has elapsed without a connection, an alarm signal (SIGALRM) is generated by the kernel. The program “catches” this signal, and sets a flag indicating that the timeout period has expired. The application can use this flag to determine that the current connection attempt failed, and then proceed to the next connection.

Transmit the request

Once a connection to a server has been established, the client assembles and transmits the query message to the data center. The message is in the form of an ODL label, which is a human-readable, text-based representation of the hierarchical ODL data structures maintained by the client. These data structures contain all of the search criteria specified by the user. The ODL message format was chosen for client/server messaging for a variety of reasons:

ODL messages are easy to read. The text format is a great aid in debugging and validation.

The ODL library provides routines for the conversion of data from in-memory (tree) to and from human-readable (label) formats.

The text format of the ODL labels is easily transmitted between various computer types; no binary data translation is required.

The tree-to-label conversion provides the added benefit of making the data contiguous in memory. Contiguous data is easier to transmit than the complicated tree structure of in-memory ODL data, since fewer system calls are needed and larger block sizes can be used.

The tree format is converted to label format prior to transmission by calling the ODL library function WriteLabel(). This function creates a local disk file containing the ODL label. The intermediate file is then written in its entirety to the socket, using a series of calls to the write() system function.

Listen for the response and read it in

Once the request has been transmitted, the client checks the socket to determine if a response has begun to arrive. The vagaries of network traffic and server load, as well as the different server implementations available at the different data centers, invariably lead to a wide variety of server response times, and therefore it must be expected that any connection could begin to receive a response at any time after the request is transmitted.

To ensure that responses from each server are processed in an orderly manner, the user interface polls each active connection. The polling is done in cycles, in which each connection is individually polled once per cycle. The polling itself is invoked on an aperiodic basis by the user interface, using an X-Window callback routine (technically, an XtWorkProc function). This function is invoked by the user interface on each pass through the main program event-processing loop. The result is that each connection is given the opportunity to execute a state transition before each update to the user interface.

The actual polling of a connection is done using the select() system call. This call determines which of a specified set of descriptors are ready for reading or writing, or have exceptional conditions pending. The current implementation, however, polls only a single socket descriptor at a time. Like the connect() system call, the select() system call is normally a blocking operation. However, unlike connect(), select() provides a direct mechanism for specifying a timeout value (to a microsecond resolution). Specifying a NULL timeout value results in a block until one of the desired descriptors fulfills the specified conditions. Specifying a timeout value of 0 causes an immediate return after the descriptor check. Specifying a non-NULL, non-zero timeout value causes the select() call to return after the specified timeout period has expired. This can be a useful approach, since a finite wait period allows the program to surrender the CPU for other processes while waiting on the select() call. However, this approach also leads to delays for the application when other work is pending. The current V0 code uses a timeout value of one second.

Once a select() call indicates that the socket has data available to read, the client reads it. This task is performed using the read() system call. The code first reads a message length from the socket, to determine how many message bytes must be read. The specified number of bytes are then read from the socket and written to disk, creating a text file of the ODL message. This message is then converted into an ODL tree in memory using the ReadLabel() ODL function. The text file is then deleted. The resulting ODL tree is then returned to the upper levels of the code for processing. Note that a call to read() is normally a blocking operation - the read() call will not return until the specified number of bytes are read, or until no more data is available. However, since the select() call is used to indicate when data is available, this blocking rarely occurs in normal operation.

Ingest the response and perform ancillary processing

The ingest step involves the actual processing of the response message from the server. Typically, this step involves the extraction and local storage of fields from the response message. Some of the copied values are temporarily stored in memory. However, most of the values are actually stored in transaction-specific data structures, and then written to a local database file (created using the GNU Database Manager - GDBM). This local database is used later to retrieve data for the user interface to display, and provides the additional benefit of a local cache which allows more results to be managed than could otherwise be held in memory; the cache can also be consulted to prevent repetitive ingestion of identical results. For inventory searches, all results for an individual data set are held in memory until the data set is complete, even if the data set spans multiple inventory result messages. When the data set is complete, it is ingested as a unit. For directory search and integrated browse requests, ingest of the ODL message is followed by a separate action function to retrieve non-ODL data (the GCMD for a directory search, a HDF (Hierarchical Data Format) file for the browse image).

The listen/read/ingest cycle is normally performed once for all transaction types except inventory search. Since an inventory search can easily involve thousands of granules in the result messages, a mechanism is needed to partition the results for effective management of the transmission. When the inventory result message is very large, it is split up into smaller segments, called chunks. The response is then transmitted to the client one chunk at a time. After each chunk is received, the client sends an acknowledgment message to the server. The acknowledgment is required to prevent the server from sending chunks faster than the client can ingest them. When the chunk acknowledgment is received, the server then sends the next chunk. This sequence of events is repeated until the client receives and ingests all of the chunks of the inventory response message.

Close the connection

Once the entire server response has been ingested, the client closes the connection. The communication is terminated with a call to the shutdown() system call. Prior to actually terminating the connection, the kernel ensures data which has not yet been transmitted is sent to the destination. The shutdown() call can be used to terminate communication over the socket in either (or both) directions. Since the client has received the entire response from the server, and has no more data to transmit, communication in each direction is terminated. The socket itself is then discarded using the close() system call.

The state machine

Introduction to the state machine

The Network Manager controls and monitors the status of each connection to a server. The Network Manager is implemented as a finite state machine. Each transaction progresses through a series of states which represent the different stages in the transaction. Each state is actually a combination of a numeric code indicating the current state, a set of actions to take while in that state (implemented as a state action function), and a set of possible subsequent states. For instance, a nominal inventory search consists of the following states:

INVSRCH_OPEN - Open the connection to the server

INVSRCH_SEARCH - Transmit the inventory search message

INVSRCH_LISTEN - Listen for the response from the server

INVSRCH_INGEST - Ingest the response from the server

INVSRCH_CLOSE - Close the connection

INVSRCH_TERMINATE - Transaction is over

The exact sequence of states for a given transaction vary with the transaction, and can also vary based on the events which occur during preceding states. The state machine can be visualized as a network which initially branches, then joins. All paths start in the OPEN state, and end at the same point - in the TERMINATE state.

State action functions and state tables

The actions comprising one state in a sequence (and the events which cause a transition to the next state) are performed using a state action function. A state action function is invoked for each connection on each pass through the state machine “cycle”. The state action function to execute is determined by the transaction type and the current state within the transaction. Some state action functions are shared between transaction types, such as the functions for opening and closing connections, and reading and writing messages. Other state action functions are transaction-specific, such as the functions for ingesting specific message types.

Regardless of their type, all of the state action functions share a certain characteristic - each returns an event code. An event code is a concise description of the status of the execution of the state action function. For instance, the state action function which opens a connection to a data center returns the IK_CONNECT_OPEN event code when the connection is successfully opened, and the event IK_CONNECT_FAILED if no connection was made. In this way, the state action functions (and lower-level code) mask the details of the work they perform, and allow the higher-level code to deal with the state machine in a symbolic fashion.

Once a state action function has been invoked and its event has been returned, the state machine code performs a table lookup. The state tables contain entries for each combination of current state and event, leading to a matrix for each transaction type. The matrix contains the code for the next state to enter, based on the current state and the most recent event. The state table thus embodies all possible sequences of events and states for any given transaction type. The combination of the state tables, state action functions, and state codes constitutes the state machine. This design allows for the addition of new transaction and message types by inserting a new state table and state action function table, along with any new state action functions for performing transaction-specific actions.

Tying it together: the poller

Connecting the user interface to the state machine

The application should provide the capability for the user to perform other activities while searches are in progress. In addition, the application should be able to manage multiple simultaneous search connections, and to provide timely feedback to the user on the status of each connection in the transaction. These objectives are satisfied through an aperiodic polling mechanism (described above).

On each pass through the event-processing loop, the user interface invokes the poller, which acts as a high-level interface to the state action functions. This function invokes the state action function for each connection in turn, and processes the results to determine if a new state is required for any connection. After state action functions have been invoked for all connections, and any resulting state transitions performed, control returns to the user interface. For the V0 IMS Web Gateway, a different approach is used - a separate program is invoked from the CGI program handling the request. This external program acts as a client without a user interface, periodically invoking the poller to update the state of the connections. Results are then stored in a file and transferred back to the main gateway code for display as an HTML document

Once a polling cycle is complete, the user interface examines the current state for each connection, and updates the communication status screen accordingly. As connections progress through the states of the transaction, the user interface updates the displays to ensure that the user always sees the current state of each connection after each state transition cycle. This approach allows for a clean separation of low-level and high-level (user interface) functionality, and closely resembles the Model-View-Controller paradigm frequently used in object-oriented programming.

Limitations of the prototype design

Introduction

The prototype design described in the previous section has served as the basis of the V0 client for the past several years, and this approach has proven successful. However, the assumptions under which the design was promulgated have changed. Some of the new conditions are:

The client software must now run on a wider variety of UNIX systems than initially envisaged. The requirement for VMS support has been removed.

Much of the client code has been extracted and used to create a variety of gateways to and from other systems.

The growth in the population of data centers (particularly for international partner sites) is straining several system resources (and initial design assumptions) to their limits.

Code written for the rapid-prototyping environment of the early days of the project has not scaled or ported to the degree now required.

The new conditions have created new problems for the V0 system, and have exposed design decisions that are no longer appropriate. The objective of the current software overhaul effort is to identify and address some of these problems in a timely and cost-efficient manner.

Scalability

Fixed maximum number of connections

The current implementation of the client provides for a fixed maximum number of simultaneous connections to data centers. However, this limit is hard-coded into the implementation of the state machine, and is therefore impossible to change at run-time. The state machine allocates memory for the maximum number of connections, regardless of the number of connections actually in use. This approach leads to a waste of system memory. If the application only allocates the memory required for the current number of connections, significant memory savings can be achieved.

Limitation on open descriptors

As of this writing (early September 1996), the maximum number of simultaneous connections to data centers during a single search is 30. For the standard EOSDIS V0 data centers, this limit is acceptable. However, the use of the state machine and underlying code in gateways (especially the EOSDIS V0 World-Wide Web and CINTEX gateways) has highlighted the fact that this limit can be too low in some situations. For instance, the international partner sites are more numerous than the domestic sites, and their number is rapidly increasing. It is expected that the number of sites will exceed the 30-connection limit within the lifetime of the software. Note that this limitation would only cause a problem if the user constructed a search that required simultaneous access to more than 30 data centers.

Under the UNIX operating system, each process has a limit on the number of descriptors that it can use at any one time. A descriptor is required in order to perform any kind of input or output - to or from a file, the terminal, or a socket. The actual value of this limit is configured into the kernel, and typically ranges from 64 to 200 (or higher). It is possible that the user may create a search that should be sent to a number of data centers greater than the number of allowable open descriptors. If this limit can be circumvented, then the user will be able to simultaneously search many more data centers. Since the limit itself is a kernel parameter, it is not alterable by the V0 software. A preferred approach would permit the software to detect situations in which more connections are requested than are available, and queue the pending connections so that as earlier connections are terminated, pending connections are executed. In this way, all requested data centers will be contacted, while still observing the system-imposed limits on the number of open descriptors. This approach should also ensure that adequate descriptors remain available for non-socket I/O, such as log files, database files, ODL files, and X-Window packet traffic.

Memory use

The chunking protocol used during an inventory search requires special handling of inventory result messages. In the current approach, all chunks for a given connection are held in memory (as an ODL tree) until all the chunks for a single data set have been retrieved. As new chunks arrive, they are disassembled and their components added to the in-memory tree. When all of the chunks for a data set have been received, the entire data set (and its constituent granules) are ingested.

This approach can lead to excessive memory usage by the client. The situation is exacerbated when the user raises the per-data set granule limit from its default value of 100, or when the inventory search is opened to many data centers simultaneously. If memory management during inventory result ingest can be improved without compromising the existing chunking protocol, significant performance enhancements may be obtained.

Performance

Memory use

Another memory-related problem involves the current methods for arranging data in a contiguous block of memory prior to storage in database files. Most of the data used by the client is stored in a set of hierarchical data structures, with frequent use of pointers to refer to dynamically allocated blocks. In order to write this data to disk, it must be placed into a contiguous block of memory. A set of sophisticated C-language macros was developed to ease the process of performing this manipulation, and the reverse operation of unpacking the data from its contiguous form to the original form. However, these macros, while very useful, can lead to a large number of calls to system memory allocation functions (malloc(), realloc()). One study indicated that in a typical client session, approximately one-third of the CPU cycles were expended on memory allocation routines. If these packing and unpacking operations can be made more efficient, significant performance enhancements will be realized.

Inefficient user interface updates

The use of the X-Window System and OSF/Motif for the V0 client user interface has allowed the deployment of a complex but highly usable application that is portable to a wide variety of commercial UNIX systems. However, the current implementation is inefficient in places. For example, there are conditions under which the user interface performs unnecessary updates of the communication status screen. These actions generate a significant amount of X-Window packet traffic, and slow down the client, since CPU resources must be consumed to regenerate a screen image which has not changed. If screen updates can be made more efficient, X-Window packet traffic will be reduced, improving the performance and responsiveness of the user interface.

Another user-interface problem is caused by the state machine implementation. The current design invokes the state machine update mechanism once per pass through the main user interface event-processing loop. This is a reasonable approach. However, the current state machine update mechanism requires that the current state action function for each connection be invoked prior to any updates to the user interface. This approach can lead to long delays in updates of the user interface, particularly during searches with slow connections or many simultaneous connections. At times, the effect is so prominent that the client can appear to “hang”, when in fact it is only in the process of cycling through the state machine. If the user interface is given the opportunity to observe the status of the state machine more frequently, while also maintaining or improving the efficiency of the state machine and connection polling mechanism, the user will perceive significant improvements in system responsiveness.

I/O bottlenecks

Network

Portions of the communication code in the V0 system are structured to minimize the delays arising from blocking system calls. For instance, the use of the select() call ensures that excessive time is not spent waiting on socket read() operations. However, delays do arise. For example, when a connection is opened, the current implementation uses blocking connect() calls to initiate the connection. If the call times out, a counter is incremented and another connection attempt is made during the next cycle of the state machine. When a maximum number of connection attempts have been made, the connection is flagged as “dead” - the server is not available.

The problem lies in the timeout/retry mechanism. The current connection timeout is 20 seconds. However, when several data centers are contacted at the start of a search, and one or more are slow to respond, the user perceives a significant delay until the user interface is updated. For instance, if three data centers are contacted, and each is slow in responding to the connection attempt, the user may have to wait up to a full minute before the user interface first updates. As connections are established, the delay between updates is reduced, but delay can still be significant when one or more data center connections are still pending. Early versions of the V0 code used timeout values of five minutes, which could cause severe delays in user interface updates when servers were slow to respond during search initiation. The magnitude of this problem has been reduced by tuning the connection timeout value and retry counter. However, the delays in user interface updates can still make the client frustrating to use under conditions of slow initial server response. If the connection mechanism can be improved so that the slow initial response of one or more servers does not cause excessive or undue delays in the processing of data from other connections, or in updates to the user interface, delays in interface updates will be greatly reduced.

A similar problem arises when the individual connections are polled. The timeout value for the select() call is currently only one second. However, when many servers are contacted simultaneously, this delay, in conjunction with the normal delays due to reading and ingesting data, can significantly decrease the perceived responsiveness of the user interface. If the connection polling mechanism is improved so that the slow response of one or more servers does not cause excessive or undue delays in the processing of data from other connections, or in updates to the user interface, overall system performance will be greatly improved.

Disk

When ODL messages are transmitted or received via the socket connections, the messages must be first written to disk to convert to an ODL label (for transmit), or read from disk to convert to an ODL tree (for reception). In each case, the data is written to disk and immediately read back into memory. The high latency of disk I/O relative to in-memory operations can lead to delays in the processing cycle, particularly where large messages are being processed. Delays will be decreased if the efficiency of the conversion between ODL labels and trees is improved.

Another type of disk I/O becomes active during message ingest. When data set, granule, package and other types of information are received, the data are assembled into a variety of data structures and stored in local databases for future use. The current design of the client requires the presence of these local databases, and therefore their use cannot be avoided. If the ingest process is modified so that the ingest delays due to disk I/O are reduced, the time consumed by the ingest steps will be less noticeable to the user.

A minor contribution to disk I/O is system logging functions. These functions are necessary for efficient debugging and system monitoring, and cannot be avoided. However, the use of system logging functions should be judicious. For example, logging functions should not be called repeatedly within nested loops, since each requires a disk I/O operation. Additionally, legacy debugging code involving disk I/O should be removed, where possible.

Portability and maintainability

Same code used by clients and servers

In the current implementation, a subset of the V0 client code us used by the V0 servers to perform communication. However, the code makes certain assumptions for the client implementation which by default must be applied to the server code. These assumptions have proven inadequate on some occasions. For instance, timeout values used read() and write() system calls should be different between the client and the server. If a client is connected to multiple servers simultaneously, then the client should use the smallest possible timeout values for read and write operations. The server, on the other hand, is typically a child process (the progeny from a fork() system call in the parent server) that is dedicated to servicing a single client connection. The server should therefore use a liberal timeout value when reading from or writing to that client, to ensure that the connection is not broken due to delays at the client end caused by the processing of many slow connections or large volumes of data. Maintainability, portability and performance will all be improved if methods are used to tune the timeout values for the client and server.

Support wide variety of UNIX systems

The V0 IMS client is currently operational on a wide variety of commercial UNIX systems: SunOS, Solaris, IRIX, HPUX, and AIX. A version of the client which runs on the Linux operating system (a free POSIX-compatible UNIX clone) is also available. Porting is made somewhat easier by the use of POSIX functions where possible, and by the use of GNU autoconf to customize the build procedures for specific platforms. The current process needs to be improved to raise the general level of portability of the code by increased reliance on published POSIX functionality, and standard UNIX functions. The use of autoconf should also be improved to further automate the build process, which currently requires the programmer to specify a variety of system parameters which should be configurable in an automated fashion.

Difficult to add new message types

The V0 client uses a variety of message types to communicate with the servers. However, knowledge of the characteristics of message types is diffused throughout the code. When new message types are added, client changes must be made in several places. At a minimum, changes are required in the state tables and state action function tables. In some cases, changes are required in the low-level code as well. If the code is restructured to allow the addition of future message types, future enhancements will be easier to execute and less prone to unpredictable side effects.

Inconsistent code compartmentalization and removal of legacy code

These problems will be addressed independently of the approach chosen to remedy problems of scalability and performance.

Approaches to the problems

Introduction

This section of the document will describe three approaches to some of the problems described in the previous section. Some of the problems, such as the elimination of legacy code and increased code maintainability and portability, will be addressed regardless of the overall approach to the redesign, since these problems can be addressed independently of any architectural changes in the software. The redesign approaches described below will primarily address the some of the problems of scalability and I/O performance. Problems of portability and maintainability, as well as problems caused by CPU-bound operations (such as ingest), are not directly addressed by the approaches below; they will be addressed during the design phase, independently of the approach chosen.

The problems of scalability and performance are caused by two factors: delays caused by blocking calls, and the sequencing of blocking calls. A blocking call, in general, is a call which does not return control to the caller until the entire requested task has been performed. For instance, a blocking call to connect() does not return to the caller until the TCP/IP connection to the server is completely established. During a blocking call, the entire client application is in a wait state, performing no useful work.

In the general case, each blocking call introduces a delay of d seconds between updates to the user interface (ignore processing delays for now). When a single connection is used in a search, delays between successive user interface updates are at most d seconds. The problem is compounded by the serial nature of the current implementation - all delays are sequential. For example, if a transaction with multiple data centers is ongoing, then each data center is the target of a blocking connection attempt when the transaction is started. If two connections are used, delays can range up to 2d seconds, depending on the responsiveness of the servers and the network. In general, for n connections, the delay D between updates to the user interface is at most nd seconds:

In the current implementation, any blocking system call adds to the delay perceived by the user, as indicated by increased delays in the frequency of updates to the interface. This effect is shown in the Figure 2:

�

Figure 2: Delays caused by sequential access to multiple data centers.

This figure suggests several possible general techniques to address the problems:

Reduce the magnitude of the individual delays.

Reduce the number of the delays.

Perform the delays in parallel.

Each of these techniques has the potential to significantly increase the performance of the system as a whole. More importantly, each of these approaches can improve the user perception of system performance, which is arguably as important as the “real” system performance.

Reducing the magnitude of the individual delays can be used as a first step in performance enhancement. In fact, recent tuning of the connection timeout value has reduced the maximum initial connection delay from 5 minutes per failed connection to 20 seconds. Reducing the number of the delays is not possible - each connection must experience the delays inherent in its transaction. The technique affording the greatest opportunities for further performance enhancements is performing the delays in parallel (delay multiplexing).

There are three general approaches which can be used to perform delay multiplexing:

Multiprocessing

Multithreading

Multitasking

Each of these approaches has technical benefits and drawbacks. Each is discussed in detail below. Each approach section will begin with a short description of relevant technical concepts, followed by discussions of the technical benefits and problems of the approach. Each section ends with an estimate of resources for completing the project using that approach, and a summary of the schedule and technical risks of the approach. The schedule risk is the probability that the approach will not be achieved with the estimated resources. The technical risk is the probability that the approach will not work at all - will it fail to address the requirements even if the worst-case schedule is assumed?

The purpose of this document is to examine the relative merits of each of these approaches to delay multiplexing. Once an optimal approach has been selected, it will be combined with techniques to address the problems that are independent of the approach selected.

Multiprocessing

Introduction

In this approach, the software would utilize one of the most powerful features of the UNIX operating system - the ability to run multiple independent processes simultaneously. The software would be split into a set of processes which run at the same time, and communicate with each other via UNIX IPC (Inter-Process Communication) mechanisms.

A process is an instance of a program executing in system memory. Under UNIX, a collection of processes can consist of multiple copies of the same program, or a variety of different programs. Each process maintains its own address space for code and data. A process cannot observe or modify the address space of another process. Each process is in effect a “black box”, which operates without knowledge that other processes exist. Such an approach, in the strict sense, would be of limited usefulness. UNIX-domain IPC mechanisms relax the stringent separation of processes to allow transmission of data between processes.

There are several types of IPC under the UNIX environment:

Pipes - A pipe is a kernel-level mechanism typically used to send the output of one process directly to the input of another process. A pipe is created with the pipe() system call. By default, pipes can only be used between related processes, i.e. processes with a common ancestor. Pipes have a fixed maximum buffer size, and therefore can be “filled”, in which case no more data is allowed in the pipe until the reading end of the pipe “drains” some of the contents. The capacity of a pipe is a kernel parameter that cannot be changed at the application level.

Named pipes (FIFOs) - A named pipe is similar to a pipe in that it allows the connection of the output of one process to the input of another. However, a named pipe has the added advantage of existing in a name space (the filesystem) that allows unrelated processes to rendezvous and exchange data. Like pipes, named pipes are limited in capacity by the size of the kernel pipe buffers.

Message queues - A message queue is a kernel-level capability that allows a process to send and receive small data messages through the kernel to another process. This capability is extremely useful when the ordering and prioritizing of messages is critical to the system. System calls exist to allow messages to be extracted from the queue based on their type or priority, while maintaining the order of remaining messages. However, like pipes, message queues are limited in application by several kernel parameters. There are separate limits on the number of message queues throughout the system, as well as global and per-queue limits on the number of messages, and the total size of the messages.

Semaphores - A semaphore is typically used for signal and flag-type communication between processes, such as the coordination of access to shared resources, e.g. files, ports, etc.. Semaphores are also used as resource counters. Like message queues, there are system-wide limits on the number of semaphores and the size of their contents.

Shared memory - Shared memory is the highest-performance method of IPC. In effect, two or more processes can arrange to share a common segment of memory, which is mapped to the address space of each process. The process can then use the memory as if it were within the native address space. The logical address of the memory can (and usually does) differ between processes, even though the same physical address space is used. Shared memory attains high performance because there is no need to send the data through the kernel, as must be done with the other forms of IPC. However, care must be taken to coordinate access to the shared memory segment, to ensure that the sharing processes to not overwrite data from another process. Access to shared memory segments is usually performed using semaphores.

Sockets - Sockets are not restricted to the network programming regime. A socket can also be created in the UNIX domain, using the same set of system calls which allow use of sockets in the TCP/IP domain. Many versions of UNIX actually build their pipe implementations on top of UNIX-domain sockets. Like pipes, sockets are implemented as descriptors, and therefore count against the limit of active descriptors for a single process.

Using the techniques described above, it would be possible to split the communication code into a collection of independent processes, where each process would manage the communication with a single data center, and another process would manage the user interface. As the communication processes receive data from and send data to the data centers, they would transmit status information to the user interface process for use in updating the communication status screen, while performing local ingest and storage of results.

One approach would be to use the pipe() system calls to create a dedicated channel between the user interface process and each communication process. The pipes would periodically be polled for data, in a fashion similar to the current polling of the socket connections. Alternatively, UNIX-domain sockets can be used to establish bi-directional connections with the communication processes. This approach is more efficient than using pipes (if somewhat more complex), since a single descriptor is needed for a bi-directional socket connection, as opposed to two descriptors (one for reading and one for writing) required for a pipe connection. Bi-directional communication is required to permit the user interface process to send control information, such as abort commands, to the communication processes.

Another approach is the use of shared memory. In this approach, the communication processes would fill in sections of the shared memory segment with status and result information as they receive it from their data centers. Semaphores would be used to coordinate access, ensuring that the user interface process does not try to read data that is in the process of being updated by the communication process. This approach will give the highest-performance communication between the user interface and communication processes, while providing all of the benefits of increased compartmentalization and simplification of the code in the communication processes.

The communication processes could be simplified if they simply transferred the result messages back to the user interface process, but this approach simply shifts the location of a CPU-bound operation (ingest), and in fact recreates the problem of simultaneous input of large blocks of data that was originally solved by performing the subdivision - instead of trying to monitor several sockets, the user interface process would be forced to monitor several IPC channels. Therefore, the communication processes would be structured to perform individual ingest of received messages, and IPC mechanisms would be used for status information only.

The use of message queues would be of limited utility in the current system. Message queues are limited in number and size. They could be used for the communication of status information, with one message queue for each communication process. However, most UNIX systems provide only a small system-wide limit on message queue size and number, and these limits would rapidly be exceeded during large multiple-data center searches.

The most likely solution would be the use of a shared memory segment into which the communication processes will write status information. The user interface process would then be able to access the status information at any time, independent of the current state of the individual connections. This provides the highest-performance communication between the connections and the interface. Additionally, if the shared memory segment is partitioned for each communication process, no synchronization variables would be required, since overwrites would be avoided.

Technical benefits

Scalability is addressed by simply creating a process at run-time for each connection for the current search. This approach immediately avoids the limits on per-process open descriptors.

Performance is addressed, since many of the delays previously series are now in parallel (assuming they are not recreated in the form of IPC delays). The operating system takes care of the process switching, and simple blocking calls can be used in the communication subprocesses. In effect, the delays are made in parallel.

Maintainability is addressed by splitting the software into multiple independent processes, providing the ultimate in single-host separation of code and data. All communication between processes must be explicitly arranged, and therefore the data flows are more controlled and documented.

Technical disadvantages

All code, including much of the user interface code, must be re-evaluated for multiple-process safety. This characteristic is difficult to evaluate and predict accurately for code which was not designed for a multiple-process implementation. Simultaneous uncoordinated access to external resources, such as log and database files, is one form of this problem. If a large legacy system (such as the V0 IMS) is to be converted to a multiple-process implementation, it will probably be necessary to “debug it into correctness”, since the number of possible side effects (collisions) caused by undocumented assumptions will be high and difficult to find. Such an effort is difficult to plan and estimate, and is very time-consuming. For an example of the problems that undocumented assumptions can cause, refer to the discussion of sorting and scrolling code in Sidebar 1.

The memory requirements for the system as a whole will increase. The memory “footprint” of a single large process (the existing client) would be replaced by the memory “footprint” of one slightly smaller process (the UI process), and a (potentially large) number of smaller communication processes.

Child process generation is a high-overhead operation. When a new process is generated, an existing process must first be duplicated (code and data segments), and then replaced by a new program image. Significant resources are required from the operating system for these actions, particularly when the parent process is large.

UNIX-domain IPC can be limited in capacity, high-overhead and difficult to coordinate when many processes are involved. All of the mechanisms described above have system-wide limits on either their number, individual size, aggregate size, or all of these. When many processes are communicating, it would be difficult to effectively manage resources which are operating at or near their system-wide limits. Speed advantages gained by using multiple processes would be at least partially offset by the overhead required for coordination of resources (such as files) between the multiple processes, this recreating some of the delays of the current implementation.

Resources and risks

Resources

The multiprocessing approach would require approximately 12 PM (programmer-months) of effort, since the approach requires essentially a total rewrite of all non-user interface portions of the code, as well as a portion of the user interface code.

Schedule risk: Medium

The rewritten code will expose an unknown number of undocumented assumptions between the communication code and the remainder of the system. These undocumented assumptions will contribute significant schedule variability due to the unknown effort required to address them. Unexpected problems will also likely arise when the third-party software packages, such as ODL and GDBM, are used in a multiprocessing environment.

Technical risk: Medium

The techniques used in this approach have been widely used in the UNIX environment for many years, and they are stable and largely portable. The magnitude of a redesign using this approach is so significant that the only way to ensure that all undocumented assumptions are addressed is to eliminate them by redesigning the entire system. In short, it may never be possible to ensure that the system has been “debugged into correctness”.

Sidebar 1: Undocumented assumptions

Whenever a programmer writes code, he makes certain assumptions about the environment in which the code will run. The best programmers try to limit these assumptions and, if there is more than a remote chance of their being violated, they include tests for them so the software will (at best) handle the anomaly or (at worst) fail gracefully. If the programmer can convince himself that there is no chance that the anomaly can occur at all, he may choose to not test for it. For example, consider the following code fragment:

x = y * y + 1;

z = 20 / x;

In this code, the only way the division could fail is if y were so large that an overflow occurs that happens to produce a bit pattern in x that will be interpreted as zero. On the other hand, good code must try to limit the assumptions it makes about its environment, particularly if those assumptions could well prove false.

When the V0 sort and scroll routines were being programmed, the original author wrote the code which is shown (in greatly simplified pseudo-code) in the figure below. The function N(gran) represents a function in the database manager that returns the number of granules currently in the data base. The variables top and bottom hold the indexes of the first and last lines to be shown on the 20-line inventory results screen. (For ease of presentation, the variables top and bottom are presented as though they indexed beginning at one rather than the C standard of indexing at zero.)

Sort

Allocate memory for N(gran) granules;

Read N(gran) granules from the data base;

Sort N(gran) granules in the array;

top = 1;

bottom = min(20, N(gran));

Scroll

top = min(top+20, N(gran));

bottom = min(top+20, N(gran));

When this code was reviewed with the original programmer, it was pointed out that he was making an assumption here that was likely to be invalid: that the number of granules in the database when the user attempted to scroll the screen was the same number as was present when the array was built. If there were 30 granules present when the screen was built, but 25 more came in before the scroll request, he would attempt to display elements that were not even in the array. One possible correction for this would be:

Sort

Allocate memory for N(gran) granules;

Read N(gran) granules from the data base;

Sort N(gran) granules in the array;

top = 1;

bottom = min(20, N(gran));

N' = N(gran);

Scroll

top = min(top+20, N');

bottom = min(top+20, N');

This would have been a perfectly good solution for the current client code. It would never fail a test and is logically sound. As it happens, a different solution was suggested:

Sort

N' = N(gran);

Allocate memory for N' granules;

Read N' granules from the data base;

Sort N' granules in the array;

top = 1;

bottom = min(20, N');

Scroll

top = min(top+20, N');

bottom = min(top+20, N');

This was prompted by a simple desire to avoid the unnecessary overhead of four additional calls to N(gran). However, it has another benefit: it can be arbitrarily multiplexed. If the former solution had been employed but was then used by multiple processes or threads, the sort routine might allocate an array of 10 granules but then if more arrived it might read in 20, overwriting memory; and then it might sort 30 array positions if still more arrived before the actual sort statements executed. That solution is making the assumption that the size of the database does not grow while the sort routine is executing. That assumption is completely correct in the current client code, but would be false if the operating system can multiplex data ingest with the sort routine.

The problem is there are thousands of such assumptions throughout any code of this size. They are seldom documented in any way because the original programmers knew the environment made those cases impossible. But when changing the environment in major ways, those assumptions can become invalid and lead to fatal errors. There are several ways to address such undocumented assumptions:

Rewrite all code from scratch so the new environment can be taken into account; the old code can serve as a model for the various algorithms but its assumptions must not be relied on.

Review all code to infer and reevaluate all assumptions being made; rewrite or correct all places where invalid assumptions are being made.

Ignore old assumptions and address any that show up as failures during testing; continue testing until the number of failures reaches some acceptably low level; this is the "debug into correctness" method that suffers from being almost impossible to schedule; since there is no way to know how many assumptions exist or how many will fail or what particular set of test cases will expose them, one can only make an wild guess and hope for the best; this approach is held in low esteem (for obvious reasons), but is nonetheless used frequently.

Limit areas where old assumptions can be violated by limiting the environment change; apply one of the preceding three methods to the areas changed; this is a balance between the amount of change necessary to effect the desired result with the minimum exposure to undocumented assumptions.

Multithreading

Introduction

A thread is an independent sequence of execution within a single process. In a traditional UNIX process, a single thread exists - only one instruction is logically and physically executed at a time. In a multithreaded program, however, multiple sequences of execution can exist, each with its own program counter and other registers. On a single-processor host, only a single instruction is physically executing at a time. Threads allow, in effect, multiple logical CPUs within a single application, by maintaining images of the CPU register sets and switching between them as threads are activated and deactivated. The net effect is similar to multiple processes; however, threads within the same process share the same address space for both data and code. The default behavior is thus fundamentally different than the multiprocessing approach. In the latter approach, there is no communication between processes by default, since the processes maintain independent data address spaces. In the multithreaded approach, there is total communication by default, since the threads share the same data address space.

The sharing of address space requires the use of some form of thread synchronization in order to prevent collisions on shared data or other resources. Consider what would happen if this were not the case. If two threads each wanted to write to a file at the same time, it is possible that the thread scheduler may switch from one thread during its write, to the other thread, which begins its write. The resulting data is a mixture of the two write operations, and is therefore useless. This problem is identical in form to the problem of coordinating multiple processes. However, the use and coordination of threads differs from multiple processes in several significant ways:

Inter-thread communication is much faster than any form of IPC, since all communication is within the same process.

The sharing of data and code address space can easily cause unexpected collisions, especially when global and static variables are used. These collisions are impossible in a multiple-process implementation. Additionally, per-process resource limits, such as the number of open descriptors, apply to all threads combined, not to each thread as a unit.

The resources required to create a new thread are very small compared to the resources required to create a new process.

The net effect is that threads provide many of the benefits of multiprocessing implementations (separate logical sequences of execution), within the context of a single process, thus realizing significant savings in system resources. However, new problems are introduced. Extreme care must be taken in the coordination of threads to ensure that collisions are avoided. All thread implementations provide some form of resource locking (many forms are available), which provide a thread with the ability to guarantee exclusive access to a resource, whether that resource is a file, a socket, a terminal, or just a global variable. The procedure is similar to using semaphores for IPC - perform a combined atomic check/lock sequence. If the check indicates that no other thread is using the resource, the resource is immediately locked for the current thread, preventing other threads from accessing the resource. Note that the check and lock are performed as an atomic unit - no other thread can “sneak in” and lock the resource between the check and the lock for the current process. The coordination problem is greater for threads because of the need to coordinate access to internal data as well as external resources.

Threads are a relatively recent addition to the UNIX environment. The POSIX threads standard (POSIX 10031.c 1995) has only recently become available, and thread implementations based on this standard are not widely available. Some companies, however, have developed effective host-specific thread implementations. Examples include NeXT (in the Mach kernel), Sun (in Solaris), IBM (OS/2), and Microsoft (Windows NT). Additionally, application-level implementations of the POSIX threads standard are becoming available. The most widely used implementation is pthreads, available from MIT. This is a library which implements the POSIX threads standard, and has been ported to several commercial UNIX systems, including SunOS, Solaris, Linux, NetBSD, OSF/1, IRIX, and HP/UX. While freely available in source code form, this library is still subject to frequent updates.

Technical benefits

Scalability is addressed because threads provide a low-overhead parallelism to the application. Individual thread code can be written in a fashion very similar to code for multiple processes - simple blocking calls can be used, and the thread dispatch mechanism takes care of switching between threads when other work is available. Threads thus provide most of the benefits of a multiprocessing approach at the cost of far fewer resources (memory, CPU cycles, context switches, time, etc.). For example, the time to switch between threads is about 20% of the time required for a process context switch (under Solaris).

Performance is addressed because thread implementations typically provide higher performance than multiprocessing code, since all data resides within the context of a single address space, and does not need to pass through the kernel to another process in order to be used. Thread implementations make it easy to share data between threads; locking of globally-modifiable data is only performed when needed. Inter-thread synchronization variables under Solaris, for instance, are approximately 10 times faster than inter-process variables. Additionally, the cost of creating a thread is significantly less than that for a process. For instance, a thread on a Solaris system can be created over 30 times faster than a new process.

Technical disadvantages

A multiple-thread approach does not address the problem of the limit on per-process open descriptors.

All code - including system libraries - must be re-evaluated for thread safety. Thread safety is even more difficult to evaluate than multiprocessing safety. Simultaneous uncoordinated access to global variables is only the simplest form of this problem. Other, more subtle problems can arise simply due to the ordering of the code. The risk of collisions on data and external resources in the thread case is much higher than for the multiple-process case.

File formats and access methods will need to be changed to support thread-safe access. Multiple threads will need to write to the same file, so each would need to ensure that the file is locked for its use prior to any write operation. The result is multiple system calls (locking followed by writing) where previously a single system call (writing) was required.

Thread APIs are not yet standardized among vendors. Only Sun provides a widely-deployed native thread implementation (in Solaris). Most major vendors have committed to deploying POSIX-compliant thread implementations, but this deployment is still far from realization. The pthreads library, while useful and widely ported, is still in flux, and is inappropriate for use in widely-deployed operational system such as the V0 IMS.

Resources and risks

Resources

Executing a threaded implementation will increase the time required over that for a multiple-process implementation, since additional programmer training will be required, and debugging will be more difficult to predict and execute. Approximately 16 PM (programmer months) would be required for a threaded implementation.

Schedule risk: High

The introduction of threads to the V0 system runs the risk of exposing a large number of undocumented assumptions and design incompatibilities (see Sidebar 1). These risks are similar to those for the multiprocessing approach, but are greater in magnitude, due to the uncontrolled access to memory allowed by the multithreading approach.

Technical risk: High

The primary risk is that so many incompatibilities would be created by a move to a threaded implementation that no amount of debugging effort would produce a usable product.

Multitasking

Introduction

The current implementation uses a state machine to logically define the sequence of operations for a transaction. However, the overall speed of the user interface, and the system as a whole, is limited by the polling mechanism and the sequential nature of the communication delays. The multiprocessing and multithreading approaches described above address this problem by making the code for each connection independent, either in a separate process or a separate thread. In either case, the user interface itself remains as a separate thread or a separate process.

Previous approaches discussed techniques for multiplexing delays using system-controlled facilities (processes and threads). There are other approaches which can be used to perform delay multiplexing at the application level. One way to achieve this effect is to make greater use of non-blocking system calls. For instance, the delays caused by blocking connect() calls can be alleviated by initiating a non-blocking connect() call, and then going on to other work. Later, the socket is polled (using the select() system call) to determine if the connection has been established. The actual amount of time required to establish the connection will not change, but the program is given the opportunity to perform other work while waiting for the connection to complete. In effect, the connection delay is ignored by the program, with the understanding that it is the responsibility of the application to check back to determine when the socket is connected. A similar approach is already in use for some socket read operations - a select() call is used to determine when input is ready on a socket, instead of issuing a blocking read() call. The non-blocking system call technique can itself be made more efficient. In any situation where more than one descriptor could be in the same state, the group of descriptors may be combined and polled simultaneously, with a single select() call. In this case, multiple delays are made parallel by using a single select() call, with the net effect of the user experiencing only a single delay.

The application-level delay multiplexing techniques described above can be used as the basis for an intelligent grouping of state machine functions. In this approach, the orderly transitions between states for each connection are coordinated for increased efficiency. In effect, each connection becomes a separate task (multitasking) under the control of the application. Control of individual tasks would be maintained using a task dispatcher mechanism, which would monitor a task to determine when it is available for switching, and execute the transition of control to the next available task. Coordination of this type requires a synchronization point for control, and the most appropriate synchronization point for this problem is the blocking system calls. In each case where a blocking system call is currently issued, a non-blocking call could instead be used. The program would then be free to perform other work, such as reading from data-ready descriptors, or performing ingest, or updating the user interface. The application would return to check the descriptor on the next state machine cycle. When data is ready from a descriptor, the application would then proceed through subsequent states for that connection immediately, until the next blocking operation is encountered, or the transaction is completed. This non-stop sequence of actions is a task segment. Grouping of states to form task segments is illustrated in Figure 3. Using this technique, the delays caused by sequential blocking calls would be largely eliminated. Additionally, delays caused by the current state machine arrangement, in which data processing is delayed until the following state even when the data is ready for processing, are eliminated. The actual time required (in CPU cycles) to execute the operation would not change, but the blocking delay is replaced with useful work on other connections. This approach is analogous to a threaded approach; data and code are shared in a single address space, but without the dangers of inadvertent data and resource collisions.

�

Figure 3: Grouping of states to form task segments.

Technical benefits

Scalability is enhanced by eliminating the serial nature of multiple blocking system calls.

Performance is improved by either ignoring or making parallel the delays that are caused by system calls which currently block. The benefits approach those obtainable by using multiple processes or threads, but will not be quite as extensive, since control switching would be performed by the application itself.

Maintainability is enhanced because changes to existing code will be largely limited to code required to implement the dispatcher which will control the internal switching of tasks. Existing state machine code need not be modified. Additionally, no new third-party code will be required for this implementation. No changes are made in any current assumptions on the availability or accessibility of data or external resources, and therefore the risk of collisions is significantly less than in other approaches.

Technical disadvantages

Synchronization will require static, a priori-determined synchronization points, reducing the flexibility and ultimate performance enhancements available using this approach.

At the level of implementation discussed above, this approach does not address non-network I/O bottlenecks, such as disk I/O. Increased performance would be available by adding synchronization points based on disk I/O, but the extra level of effort required would be significant.

Resources and risks

Resources

The multitasking approach can be achieved with approximately 6 PM of effort, including one full-time programmer/analyst, and the part-time efforts of several other programmers (most likely domain experts for different portions of the existing code).

Schedule risk: Low

The relatively small volume of code changes and new code development (and accompanying documentation) make the completion of this approach with the permitted time period highly likely. Additionally, the nature of the changes will limit the effects of undocumented assumptions. The application retains control over the sequencing of operations, and therefore ensures that switching is not performed at arbitrary points.

Technical risk: Medium

The multitasking approach requires the smallest amount of code changes of the three approaches discussed in this document. The new code will replace the existing poller with a task dispatcher mechanism. Modifications to the underlying code will be limited to changes which address problems which are independent of delay multiplexing. This approach significantly decreasing the changes required to existing code, relative to the other approaches.

Conclusions

We recommend the multitasking approach for this project. The primary consideration is the time frame - approximately 3.5 months are available for the redesign and implementation of the V0 communication code. The total redesigns required for the multiple-process and multiple-thread approaches, as well as the technical risks, make those approaches unsuitable for the limited time allowed for this effort. The only approach which can be achieved with a great degree of confidence is the multitasking approach. This reduction in time requirements is made possible by the decreased volume of code changes and new code generation for the multitasking approach, as well as the lowered probability of side-effects which would lead to unexpected debugging efforts. This approach, in combination with solutions to the non-delay multiplexing problems, will provide the majority of the desired performance enhancements at a reasonable cost.

1.1	� PAGE �27�	� DATE �09/13/96� � TIME �1:28 PM�

	Eric Winter, Hughes STX

