12
15

The V0 Client/Server Simulator

The V0 Client/Server Simulatortc "The V0 Client/Server Simulator"
April 18, 1997

1. Introduction
1. Introduction " \l 2

1.1 Document Overviewtc "1.1 Document Overview" \l 3
This document describes a preliminary architecture for the V0 client and server simulators. It is primarily focused on the software that controls transaction protocols and sends and receives messages via the Internet. This document is primarily concerned with the general capabilities of the simulators and the tester's control over them. A tool for validating Object Description Language (ODL, which is a data description language used by the V0 IMS to convey information between clients and servers) according to the V0 Data Dictionary will be described in a separate document.

1.2 Overviewtc "1.2 Overview" \l 3
Two separate programs will be developed. One will model the V0 server and another will model the V0 client. Each will contain functions that provide its half of the three basic V0 client/server transaction protocols:

(1)
The inventory search (IS) protocol used in the INVENTORY_SEARCH - INVENTORY_RESULT transaction: A client sends a request, the server replies with one or more ODL messages (chunks), awaiting an acknowledgment from the client after each and sends out a final QUIT message. The IS protocol is described in more detail in Section 2.1.2.

(2)
The integrated browse (IB) protocol used in the BROWSE_REQUEST - INTEGRATED_BROWSE_RESULT transaction: A client sends a request, the target server replies with an ODL message followed by a browse file containing one or more binary images. NOTE: This protocol is being extended to allow for a sequence of (ODL message, browse file) pairs to be sent by the server. The client acknowledges each pair it receives except the last, which it recognizes by information provided in the ODL INTEGRATED_BROWSE_RESULT messages. The IB protocol is described in more detail in Section 2.1.3.

(3)
The standard protocol(ST), used for all other transactions (for example, the PRODUCT_REQUEST - PRODUCT_RESULT transaction): A client sends a request in the form of an ODL message and the server replies with an ODL message. The ST protocol is described in more detail in Section 2.1.1.

Each simulator will be constructed from a shared set of functions that will provide both the basic Internet connectivity and the transaction protocols described above. The code providing the transaction protocols will be built in such a way as to be able to change its behavior according to directions provided by the tester and also to handle extensions to the V0 protocol such as those required for ASTER GDS/ECS interoperability. This expanded set of messages will be referred to in this document as the V0' (V0 prime) protocol.

1.2.1 Transaction Protocol Simulatorstc "1.2.1 Transaction Protocol Simulators" \l 4
Both the server and the client simulators will have C functions that provide controllable modules that simulate the various transaction protocols. The server will have three Transaction Protocol Simulators (TPS), one for the standard protocol(ST), one for the inventory search protocol (IS), and one for the integrated browse protocol (IB). The client will also have three such TPSs to carry out its half of each transaction.

1.2.2 Control Files and Command Setstc "1.2.2 Control Files and Command Sets" \l 4
Control of the simulators is exercised by the tester through the use of control files. Control files are flat ASCII files through which the tester can set values for control parameters and specify command sets for specific TPSs. Control parameters provide high level control of the simulator. They are used, for example, to specify the server's address and for setting reporting options. A command set provides the tester control over the actions carried out during a specific transaction.

On the client side, a control file will usually contain a sequence of settings for the control parameters followed by one or more command sets. It is also possible to have additional control parameter settings between the command sets to allow values to be changed. When the client simulator encounters a command set, it treats it as a command to carry out a transaction by invoking a particular TPS and modifying its actions according to the specifications in the command set, which includes, at a minimum, the name of a file containing the ODL request to be sent.

The server simulator, on the other hand, must react to a client's request ODL messages. The server simulator will read in the ODL message from the client and determine which, if any, of the known request types has been received. (The set of requests that are known can be expanded easily through the control files.) It will use this information to choose a corresponding control file containing one or more command sets specifically provided to handle transactions of that type. Control parameter settings may also be present in the server control files.

For the first transaction of a particular type, the server simulator will read and act on any control parameter specifications preceding the first command set. Then it will read the first command set and invoke the TPS identified therein. When the transaction is complete, the simulator will leave the file open and positioned just after the end of the first command set, where it will later resume reading if another client request of the same type is received. If at some point the simulator finds that all the command sets in a control file have been used, it will reposition the file at its beginning.

In order to process a transaction, the server simulator must be able to choose a control file based upon the ODL request it has received from the client. To do this, the simulator must have been told to associate a particular file with a request of a particular type. The MAP command provides the capability of defining or changing this association. Thus, having the server simulator respond to a new ODL message type with one of the three protocols (ST, IS, or IB) is merely a matter of constructing an appropriate control file and issuing the MAP command at some point prior to the receipt of the first request of the new type.

If, for some reason, the server cannot associate a control file with a client request, the received ODL will be written to stdout, warning messages will be written to stderr, the connection will be closed with no transaction attempted, and the server simulator will listen for the next client request.

Normally a tester will run the client simulator against a live server (or gateway acting as a server), and run the server simulator against a live client. But it is possible to run the client and server simulators against each other, which might provide the following scenario which is instructive to examine:

CLIENT
SERVER

Server reads its configuration file and stdin. Associations are established between ODL request types and control files. Control parameters are set, and server awaits a connection from client.

Client reads its control file and set its control parameters (including the address and port number of the server) Client reads next command set from control file and establishes connection with the server. Client sends ODL message, say a PRODUCT_REQUEST.

Server reads the ODL message and writes it to the ODL log. It recognizes PRODUCT_REQUEST and opens a file mapped to contain the command sets for PRODUCT_REQUESTs. Server reads any leading control parameters and then the first command set and invokes the TPS identified therein. TPS sends ODL response identified in the command set and closes the connection. (PRODUCT_REQUEST control file is left open and positioned immediately after the first command set.) Server awaits another connection.

Client receives the ODL response and writes it to its ODL log, closes the connection. Client reads its control file for more control parameters and command sets.

The tester can exert considerable control over the transaction through the settings of control parameters and the construction of command sets. These topics are discussed in detail in Section 3.

Along with the client and server simulator software there will be provided sample configuration files and sample control files for carrying out a number of transactions (e.g., normal inventory search, inventory search with abort, etc.). Later in this document, templates for the command sets of the various TPSs are provided.

1.2.3 High Level Data Flowtc "1.2.3 High Level Data Flow" \l 4
[image: image1.wmf]Client

Simulator

config

cntl file

ODL file

ODL file

ODL file

Server

Simulator

config

cntl file

ODL file

ODL file

ODL file

image

image

image

cntl file

cntl file

ODL log

err log

image

image

image

ODL log

err log

Figure 1 - Client and Server Data Flows

Figure 1 shows the data flows for both the client and the server.

The client simulator first reads its configuration file (config in Figure 1) if one is available. Next it reads from the standard input (stdin), which may come from the tester’s terminal but will normally be redirected to a control file (cntl file).. The command stream optionally provides the client simulator with values for control parameters. It includes at least one command set if any action on the part of the client simulator is to occur. When the client simulator reads one complete command set, it carries out the transaction. Typically, a command set includes a sequence of file names identifying ODL messages that are to be sent to a server; command sets may also include sequences of commands and controls directed at the individual functions that comprise the TPS. When the transaction is complete, the client reads again from stdin, which may provide new settings for control parameters and additional command sets. Each time a complete command set is read, the client carries out the transaction. When the client detects an end of file on stdin, it terminates.

All ODL messages received from the server are written to standard out (stdout), which will normally be redirected to a file (ODL log). The client simulator optionally augments each ODL message as it is written to the log with information identifying the transaction that received the message, its date and time, etc. Additional optional information can be included in the output stream that can help the tester trace processing events as they occur.

Under the Integrated Browse protocol the client may receive browse files for a server. These files are normally in HDF (Hierarchical Data Format), though the simulator does not check this, and may have headers and contain multiple layers. Each browse file received from the server is output to a file (image). The V0 IMS Integrated Browse protocol is being extended to allow the receipt of multiple browse files in a single request. The client simulator writes every browse file receive to its own image file, named with sequence numbers on the end.

The server simulator operates in a similar fashion to the client simulator, but there are some differences, especially in the handling of control files. Like the client, the server first reads its configurations file (config), if present, and then reads a command stream on stdin, but controls here are limited to settings for control parameters: no command sets are allowed. The server gets its command sets from other control files that the tester provides, one for each kind of request it might possibly receive from a client. In those control files are collections of command sets.

When the server receives a request of a certain type, it reads the next command set from the associated control file and invokes the appropriate TPS. For example, the first time the server receives ODL from the client requesting an inventory search, it opens the file containing the command sets specific to inventory search and reads the first command set therein. (It leaves the file open, and the next request for inventory search will be satisfied using the second command set in the control file.)

The contents of the command set tell the TPS how to respond to the request. If the last command set has already been read from the command file, the file is repositioned at the beginning. All ODL messages the server receives from a client are written to stdout, which is normally redirected to a file. The server has options for annotating the output that are similar to those of the client.

Both the client and server simulators write error messages to stderr, which, of course, can be redirected to a file (err log). Errors are classified as either minor or fatal. A minor error causes a warning to be issued. A fatal error causes an error message to be written and the process to be terminated.

2. Architecturetc "2. Architecture" \l 2
[image: image2.wmf]Config

Get Next

Cmd Set

Connect

to server

Protocol?

Inventory

Search

Integrated

Browse

Standard

More

sets?

N

Y

Exit

Figure 2 - The Client Simulator

Block diagrams for the client and server simulators respectively are given in Figures 2 and 3. The client starts by reading the optional configuration file, using any commands found there to initialize the program.
Then, the client extracts completely the next command set from the input stream (stdin) and establishes a connection to a server. The command set will indicate which TPS is to be used for this transaction. The corresponding function will be called. Once the TPS has competed, the client will loop back and read completely the next command set from the input stream and process that. If there are no more command sets (at end of file), the client will terminate.

[image: image3.wmf]Open

& Bind

Config

Extract

Msg Id

Protocol?

Inventory

Search

Integrated

Browse

Standard

Receive

ODL

Figure 3 - The Server Simulator

The server also reads commands from stdin, but unlike the client, it does so all at once; it must see an end to the command stream before it begins to wait for a connection from a client. The tester can use this command stream in lieu of a configuration file or to override settings in the configuration file. After it is configured, the sever simulator opens and binds a socket. It then listens for a connection from a client. When one is made, it gets the ODL message and extracts the ID (the ODL group name); it reads the next available command set from the control file that is associated with that message ID. (Control files and ODL message IDs are “associated” through the use of the MAP command, which is described in section 3.) The simulator invokes the appropriate TPS, which carries out the transaction. When it is complete the server simulator loops back and listens for the next communication from a client. It will continue in this manner until a user-specified time limit (see RUNTIME_LIMIT in section 3) is exceeded.

If the server simulator cannot associate a command file with an ODL message that it has received, (for reasons such as there having been no MAP command issued for the message ID or because the associated file does not exist or because it has a syntax error), warning messages are issued, the ODL message is written to stdout, and the server closes the connection to the client. It then listens for another connection.

If an error occurs during the transaction—for example, if a file is missing or the receive ODL function times out waiting for a message from the client—then the server issues warning/error messages and loops back to await the next client connection.

2.1 Transaction Protocol Simulatorstc "2.1 Transaction Protocol Simulators" \l 3
In general, a client initiates a transaction and sends a request to a server, which in turn carries out some procedure determined by the specific request and sends back a result. The result may be large and it may be transmitted in pieces. Under both the inventory search and the extended integrated browse protocols, the client must acknowledge the receipt of each piece before the server will send the next. Thus, the client and the server must work together to carry out each transaction.

There are three transaction protocol simulators defined for the client and three for the server. Each is intended to provide one half of the client/server relationship. Each TPS is composed of building blocks that provide some part of the transaction; and command points that allow the tester to select from among a small group of alternatives for customization. Many of the building blocks also allow for tester control. Control specifications are provided to each TPS in the form of command sets from the appropriate command file. An example of a building block is the send function. Each TPS has at least one send function, and the tester can specify which file or files should be sent to the target client or server.

Throughout the client/server simulators, command
points provide the tester control over the transactions being carried out. Command points provide a mechanism whereby the tester can insert alternatives into the protocol. Command points that appear inside of loops within the protocol can accept a sequence of commands to allow them to act differently on successive iterations. Sequences of commands can be provided in command sets.

[image: image4.wmf]Next Cmd

in Sequence?

Resume

Protocol

Wait

t

seconds

Resume

Protocol

Send

ABORT

Close

Close

r

w(t)

a

c

Send

QUIT

Close

q

Figure 4 - Command Points

All command points have the same structure, which is shown in Figure 4. When a command point is reached in the code, the next command in the sequence that has been provided for it is used to determine the next action. The command r tells the command point to perform no operation and to immediately resume processing. This is the default; if no command point alternative is provide, it always resumes without any customization. The tester can cause the processing to wait a given number of seconds before resuming by using the w(t) command, where t (a floating point number) is the desired time interval in seconds. The command q tells the command point to send the quit message and then to close the connection. Similarly, the command a tells it to send the abort message and then close. (An abort message is the same as a quit message with a STATUS_CODE = 1000.) The c command tells it to simply close the connection. Any time the connection is closed by one of these terminating options (q, a, or c), the command point causes the TPS to terminate and return control to its calling function.

2.1.1 The Standard Protocol (ST)tc "2.1.1 The Standard Protocol (ST)" \l 4
In the standard protocol, a transaction is initiated when the client establishes a connection between itself and a target server. The client then sends an ODL message and awaits a response. The server, upon receiving the ODL message, decides upon an appropriate course of action, which it carries out, and concludes by sending an ODL response back to the client. Once the ODL message is sent, the server closes its socket connection and resumes listening for new client requests. The client receives the server's response and then closes its socket, and the transaction is complete.

2.1.1.1 The Client's TPS for the Standard Protocol (CST)

tc "2.1.1.1 The Client's TPS for the Standard Protocol (CST)" \l 5
[image: image5.wmf]Send

ODL

Cmd

Pt 1

Close

Cmd

Pt 2

ODL file

Timeout?

N

Y

Receive

ODL

Figure 5 - Client Standard Protocol

Figure 5 shows the client's standard protocol transaction simulator. The ODL file identified in the command set is sent to the server (Send ODL). Then CST's first command point (Cmd Pt 1) executes the command specified by the tester or the default r (resume). Here the tester can cause the TPS to send the quit or abort messages, close the connection with the server, wait some specified time, or simply resume its main line of action. If the tester has not selected one of the terminating options (q, a, or c), the Receive ODL function awaits an ODL response from the server. If the specified time limit is exceeded (Timeout?) CST closes the connection with the server (Close). If the ODL reply is received in time, Receive ODL writes the ODL message to stdout. Then, Cmd Pt 2 executes its command. The connection is then closed, and control returns to the client simulator's main routine.

The following example command set would cause the client simulator to invoke the CST transaction protocol simulator, send the contents of the file f1.odl (presumably containing an ODL PRODUCT_REQUEST message), and accept a response from the server within a 4 minute timeout limit. (Command sets are dealt with in detail in Section 3.)

ECHO "Product request. Transaction #1.";

CST {

#
command set for a product request

SEND
f1.odl;

CP1
r;

RECV
240;

CP2
r;

}

The ECHO command causes it’s argument to be written to the ODL log. This is useful for marking specific point in long logs, grouping various transactions of a test, or otherwise annotating the log.

Notice that, since r is the default for command points, this is exactly equivalent to:

ECHO "Product request. Transaction #1.";

CST {

#
command set for a product request

#

SEND
f1.odl;

RECV
240;

}

Here is a second example that sends the same product request file, but then immediately closes the connection without waiting for a response, such as might happen if the user’s workstation loses power in the middle of a session. This is an example where anomalous conditions can be simulated to check a server’s robustness.

ECHO "Send and die test.";

CST {

#
Product request and close connection

SEND
f1.odl;

CP1
c;

}

2.1.1.2 The Server's TPS for the Standard Protocol (SST)tc "2.1.1.2 The Server's TPS for the Standard Protocol (SST)" \l 5
[image: image6.wmf]Send

ODL

Cmd

Pt 1

Close

Cmd

Pt 2

ODL file

Figure 6 - Server Standard Protocol

Figure 6 shows the server's standard protocol transaction simulator. The first command point (Cmd Pt 1) executes its command. Then, if no terminating option was executed, the ODL file is sent (Send ODL), and Cmd Pt 2 executes its command. Finally, SST closes it connection to the client and returns control to the calling function.

The example command set that follows directs the SST to send the file f2.odl to the client and then close its connection. It is presumably a part of a control file set up to respond to PRODUCT_REQUEST messages received from the client.

SST {

#
command set for PRODUCT_RESPONSE

#

CP1
r;

SEND
f2.odl;

CP2
r;

}

The tester might add a delay in a command point to simulate the time needed to service the request. In the example below, the tester has inserted a 2.5 second delay before responding.

SST {

command set for PRODUCT_RESPONSE

#

CP1
w(2.5);

SEND
f2.odl;

}

2.1.2 The Inventory Search Protocol (IS)tc "2.1.2 The Inventory Search Protocol (IS)" \l 4
In the inventory search protocol, a transaction is initiated when the client establishes a connection between itself and a target server. The client then sends an INVENTORY_SEARCH ODL message and awaits a response. The server, upon receiving the ODL message, returns the granule information in one or more ODL trees, each of which is called a chunk. Following each chunk sent, the server waits for an acknowledgment from the client. When the last ODL chunk is sent and acknowledged, the server sends the client a quit message, closes its socket connection, and resumes listening for new client requests. The client receives each of the chunks sent by the server and sends back an ODL acknowledgment after each. When it receives the quit message, the client closes its socket and the transaction is complete.

2.1.2.1 The Client's TPS for the Inventory Search Protocol (CIS) tc "2.1.2.1 The Client's TPS for the Inventory Search Protocol (CIS) " \l 5
[image: image7.wmf]Send

ODL

Cmd

Pt 1

Cmd

Pt 2

Timeout?

QUIT?

Close

Y

N

N

Y

Receive

ODL

Send

ACK

ODL file

Figure 7 - Client Inventory Search Protocol

Figure 7 shows the client's inventory search protocol transaction simulator. The ODL file identified for the send function (Send ODL) is sent to the server. The command point (Cmd Pt 1) uses the first command in the sequence provided to it to choose an action (r, w, q, a, or c) and performs it. Assuming the action does not terminate CIS, the TPS waits for a response from the server (Receive ODL). If a response is not received within a tester‑specified time limit (Timeout?), CIS closes the connection to the server (Close) and control returns to the main routine. Otherwise, the second command point (Cmd Pt 2) extracts the first command in its sequence and carries out the associated action. If processing is allowed to continue, the ODL received from the server is checked (QUIT?); if it is the QUIT message, the connection is closed (Close) and the TPS terminates; otherwise, the TPS loops back to Cmd Pt 1 and executes the second command in its sequence. This continues until a QUIT is received from the server or some tester‑specified option (or timeout) causes the TPS to terminate.

There are a number of rules associated with the proper construction of chunks. CIS does not verify that these rules are being followed. They are described in Appendix D.

In the following command set, CIS is directed to send the file inv_srch.odl (presumably containing an INVENTORY_SEARCH message) to the server. The command sequence for CP2 will cause CIS to wait 1 minute before sending back the ODL message contained in ack.odl in acknowledgment of each chunk that is received. Note that there are control parameter settings (TIMEOUT_LIMIT and ACK_FILE) that provide defaults so that these values need not be set in every command set.

ECHO
"IS with wait before ACK.";

CIS
{

#

Inventory search request

#

SEND
inv_srch.odl;

CP1

r;

RECV
360.0;

CP2

w(60.0);

ACK

ack.odl;

}

2.1.2.2 The Server's TPS for the Inventory Search Protocol (SIS) tc "2.1.2.2 The Server's TPS for the Inventory Search Protocol (SIS) " \l 5
[image: image8.wmf]Send

ODL

Cmd

Pt 1

Cmd

Pt 2

Timeout?

ACK?

Send

QUIT

Y

Y

N

N

Receive

ODL

Done?

Y

N

Close

ODL file

ODL file

ODL file

Figure 8 - Server Inventory Search Protocol

Figure 8 shows the server's inventory search protocol transaction simulator. The SIS immediately enters a loop. Its first command point (Cmd Pt 1) extracts the first command in its sequence and takes the appropriate action. Assuming it's allowed to continue, SIS sends (Send ODL) the first in a sequence of files that have been specified in the command set. Next SIS's second command point (Cmd Pt 2) extracts the first command in its sequence and takes the appropriate action. If allowed to continue, SIS listens for a tester‑specified period of time for an acknowledgment from the client (Receive ODL). If the time limit is exceeded (Timeout?) or something other than the ACK ODL message is received (ACK?), the TPS closes (Close) the connection. Otherwise, SIS determines whether the last file in the sequence has ben sent (Done?). If it has, SIS sends the client the QUIT message (Send QUIT) and closes the connection (Close). Otherwise, SIS returns to the top of the loop, executes the next command for Cmd Pt 1, and then sends the next in the sequence of ODL files.

There are a number of rules associated with the proper construction of chunks. SIS does not enforce nor verify that these rules are being followed. Indeed, one typical test would involve the creation of purposely improper chunks to verify the robustness of a client to errant servers. The chunking rules are described in Appendix D.

In the following example command set, SIS will respond with three files: c1.odl, c2.odl, and c3.odl. It will wait ten seconds between the first and second files, and one-half second between the second and third. It will allow five minutes before timeout for the client to send an acknowledgment after the first file, but only three after the second. Since no third argument is given on the RECV, the list will be started over, so there will be a five minute timeout again on the third. When the QUIT is finally sent, the version in the file syserror.odl is used, which is presumably one with a STATUS_CODE of 11, indicating that a system error occurred during the processing of the request.

ECHO
"3 chunk response.";

SIS
{

#
Inventory search response

#

CP1

r, w(10), w(.5);

SEND
c1.odl, c2.odl, c3.odl;

RECV
300, 180;

QUIT

syserror.odl;

}

2.1.3 The Integrated Browse Protocol (IB)tc "2.1.3 The Integrated Browse Protocol (IB)" \l 4
In the integrated browse protocol, a transaction is initiated when the client establishes a connection between itself and a target server. The client then sends a BROWSE_REQUEST ODL message and awaits a response. The server, upon receiving the ODL message, sends back an ODL BROWSE_RESULT followed immediately by a browse file. (Browse files are in HDF format and contain one or more layers, which are normally images, and may contain header information). When the client receives the BROWSE_RESULT message, it uses the IMAGE_SIZE field to determine how long the browse file following it will be. Then it reads the incoming browse file from the socket. For the standard V0 protocol, the client and server close their connections following the transfer of the file.

For V0', the integrated browse protocol is being extended to allow the server to send multiple browse files in response to a single request. Each will be preceded by its own BROWSE_RESULT ODL message. In all but the last file of the sequence, the field LAST_BROWSE = 0 will be present to inform the client that more files follow. Following each browse file received, the client will send an ACK message to the server.

2.1.3.1 The Client's TPS for the Integrated Browse Protocol (CIB) tc "2.1.3.1 The Client's TPS for the Integrated Browse Protocol (CIB) " \l 5
[image: image9.wmf]Send

ODL

Cmd

Pt 1

Close

Cmd

Pt 2

Receive

ODL

Timeout?

N

Y

Receive

Binary

Cmd

Pt 3

LAST_

BROWSE

=0?

Timeout?

Y

Y

N

N

Send

ACK

ODL file

Figure 9 - Client Integrated Browse Protocol

Figure 9 shows the client's integrated browse protocol transaction simulator. The CIB sends ODL file to the server (Send ODL). The first command point (Cmd Pt 1) allows the normal options to be specified. Unless a terminating option is selected by the tester, the CIB listens for and then reads in an ODL message (Receive ODL). If time runs out before the message is received the connection is closed (Close) and control reverts to the calling function. Otherwise, the second command point (Cmd Pt 2) executes the first command from its command sequence. The simulator will then listen for and receive a browse file from the server (Receive Binary). Again, a timeout will cause the connection to be closed and control to revert to the calling function. The third command point (Cmd Pt 3) allows the tester to interrupt the process or to wait before deciding whether more browse images are to be expected. If more browse files are expected (i.e., if LAST_BROWSE = 0 in the most recently received INTEGRATED_BROWSE_RESULT message), SIB sends an ACK for the browse file (Send ACK) and then loops back to command point 1. If not (i.e., if LAST_BROWSE = 1 or it is not specified) the client will close the connection (Close), and control will revert to the caller.

In the following example command set, CIB waits progressively longer periods after receiving an (ODL, binary file) pair before acknowledging their receipt. Note that since only one timeout value is specified on the RECV lines, it will be used for all iterations.

ECHO
"IB with wait before ACK";

CIB {

#
Integrated Browse Request

#

SEND
ib.odl;

CP1
r;

RECV1
6000;

CP2
r;

RECV2
600.0;

CP3
w(0.5), w(60.0), w(120.0), w(600.0);

#

I.e., wait 0.5 seconds after receiving

#

the first pair, 1 minute after the 2nd

#

2 minutes after the 3rd, and 10 after

#

the 4th.

ACK
ack.odl;

}

If the server returns only four browse files and the header of the last file contains LAST_BROWSE=0, the client will time out in Receive ODL and will close. If the last file’s header does not contain LAST_BROWSE=0, the client will close normally and the unused entries of the Cmd Pt 3 will be discarded. If the fourth file returned by the server has a header with LAST_BROWSE=0, the client will loop to read a fifth file and, upon reaching Cmd Pt 3 the next time, will restart that list and wait 0.5 seconds before continuing.
2.1.3.2 The Server's TPS for the Integrated Browse Protocol (SIB) tc "2.1.3.2 The Server's TPS for the Integrated Browse Protocol (SIB) " \l 5
tc "" \l 5
[image: image10.wmf]Send

ODL

Cmd

Pt 1

Done?

Y

N

Send

Binary

Cmd

Pt 2

Timeout?

ACK?

Close

Y

N

Receive

ODL

Y

N

ODL file

ODL file

ODL file

image

image

image

Figure 10 - Server Integrated Browse Protocol
Figure 10 shows the server's integrated browse protocol transaction simulator SIB. SIB's first function is a command point (Cmd Pt 1), which offers the usual options. It also marks the start of a loop. Within that loop, SIB sends the first file in its list of ODL files (Send ODL). Next the second command point (Cmd Pt 2) executes the first in its list of commands. Assuming it is allowed to continue, SIB sends the first in its list of browse files (Send Binary). Then SIB checks whether the last file in the list has been sent (Done?). If it has, SIB closes the connection and control is returned to the calling function. Otherwise, it listens for an ACK from the client. If the client responds with the proper message (ACK?) within the time allotted (Timeout?) by the tester, control reverts to Cmd Pt 1 at the top of the loop. Otherwise, the connection is closed and control is returned to the calling function.

The following example shows five browse files being returned.

SIB {

Integrated Browse Response; 5 browse files

#

SEND1
r1.odl, r2.odl, r3.odl, r4.odl, r5.odl;

SEND2
i1.dat, i2.dat, i3.dat, i4.dat, i5.dat;
RECV
500.0;

}

Notice that if a server simulator were to invoke this command file in response to a client simulator acting on the command set given in Section 2.1.3.1, the server would timeout after sending the forth (ODL, binary file) pair since the client waits 600 seconds before sending the ACK, but the server times out after 500. The fifth pair would not be sent.

3. Command and Control of the Simulatorstc "3. Command and Control of the Simulators" \l 2
Control of the V0 simulators is exercised through control files and configuration files. The syntax for control files and command sets is given in Appendix C.

In both control and configuration files, full‑line comments can be placed arbitrarily: lines starting with '#' in column 1 are ignored by the software. Configuration files are used to set default values for the simulator's control parameters. Configuration files are optional, but if not used, the required parameters must be set with a control file. If the simulator needs a parameter that has not been specified, it will terminate with error messages. Control files contain control parameters and command sets.

Control parameters are used to specify the general action of the program. They take effect as soon as they are read and effect any transactions that follow until they are respecified further on in the control file. A command set specifies the actions to be carried out by a TPS during a particular transaction. Control parameters appear only outside of command sets. The control parameters are listed in Section 3.1, and examples of their usage are given as part of the description of configuration files in Section 3.4. The specifications for command sets are given in Section 3.2, as are templates for the various TPSs.

3.1 Control Parameters

No default values are hard coded for the control parameters. Defaults are expected to be provided in a configuration file and overridden if necessary in a control file. In what follows, default values refer to those settings of the control parameters that will be made in the configuration file supplied with the software. Reserved words (like RUNTIME_LIMIT) are case sensitive. Filenames must not conflict with the reserved words. Since no reserved word contains a period, one way to assure no conflict is to always include an extension (like “.odl”) on all file names.

RUNTIME_LIMIT <float t> specifies the maximum run time in seconds that the simulator will be allowed to run. Use 999999 for unlimited. The default value is 90 minutes (5400).

SERVER_ADDRESS <IP address xxx.xxx.xx.xx> specifies the IP address of the server. The default will be site dependent. (Used by the client simulator only.)

SERVER_PORT <integer i> specifies the port of the server. It must be chosen so as not to contend with port addresses of other servers running on the same host. The default value is 6502, but will have to change if an existing server on the host has already claimed that port.

ACK_FILE <file_name> specifies the name of a file containing an ODL acknowledgment message. File_name will be sent by any client TPS acknowledging receipt of data from a server unless otherwise specified in the command set controlling the actual transaction. Note: a file containing a standard ODL acknowledgment message will be provided with the client simulator. A configuration file, also provided, will set ACK_FILE to the name of that file. (Used by the client simulator only.)

QUIT_FILE <file_name> specifies the name of a file containing an ODL QUIT message. File_name will be sent by a TPS QUIT function unless a different file_name is specified in the command set controlling the actual transaction. Note: a file containing a standard ODL QUIT message will be provided with the client simulator. A configuration file, also provided, will set QUIT_FILE to the name of that file.

ABORT_FILE <string file_name> specifies the name of a file containing an ODL abort message. File_name will be sent by a command point abort function. Note: a file containing an ODL QUIT message with STATUS_CODE set to 1000 will be provided with the client simulator. A configuration file, also provided, will set ABORT_FILE to the name of that file. (Normally used by the client simulator only.)

ECHO <string s> if specified, the given string will be written to stdout when the command is executed. This is useful for adding annotation to long output logs.

TIMEOUT_LIMIT <float t> specifies the default timeout limit in seconds. This limit will be used for all network reads for which specific limits have not been specified in the active command set. See RECV in Section 3.2.

TRACE <ON | OFF> turns the trace function on or off. The default is ON.

VERBOSE <ON | OFF> turns the verbose mode on or off. The default is ON.

MAP <odl_group_name> = <file_name> associates a control file with a specific ODL group name. When the server receives a request from a client, it checks the group name in the ODL message. It then searches the list of MAPed group names it knows about and extracts a command set from the associated control file. (Used by server simulator only.)

3.2 Command Set Specifications

Command sets are commands to specific TPSs, and determine the course of a single transaction. In each subsection that follows, a template for the command set that is specific to a particular TPS is given. It will be best understood in comparison with the block diagram of the particular TPS. The syntax is given in Appendix C.

A command set will start with a label identifying the TPS that is to be invoked. The label will be one of the following: CST, SST, CIS, SIS, CIB, or SIB. Braces “{}” will be used to delimit the command set. Between the braces is a specification list. The specification list provides the tester with control over the functions that comprise the TPS. The order of the specifications within the command set is not important. Specification lists vary among TPSs. Each specification in the list addresses one of the constituent functions of the TPS, and directs that function to behave in a certain way.

Most commands that accept a sequence of arguments will repeat the list from the beginning once the list is exhausted. The only exception to the is SEND when used in a SIS or SIB; the end of the list is the signal to complete the protocol and return.

The available specifications are described below:

ACK <file_sequence> specifies the names of one or more files containing an ODL ACK message. If it is not specified, the file name given for the ACK_FILE control parameter will be used.

CPi <command_sequence> specifies a command sequence for the ith command point in a TPS. If this specification is omitted, the r (resume) command is assumed.

QUIT <file_sequence> specifies the names of one or more files containing an ODL quit message. If the specification is omitted, the file specified by QUIT_FILE is used.

RECVi <float_sequence> specifies the timeout limit for the ith receive function in a TPS. If there is only one, the i is optional. The time specified must be non‑negative; a value of 0, forces an immediate timeout condition.

SENDi <file_sequence> specifies the name of a file or a sequence of files to be sent. This specification is required in all client command sets; server command sets that have no intention of responding to the client request, may omit The reaction to an exhausted sequence is to start over at the beginning except for the SIS and SIB, where exhaustion triggers the loop exit. The i applies to SIB, which has two SEND functions.

A file_sequence is a list of file names separated by commas. If a file sequence is exhausted before the TPS ends, the TPS will start again at the beginning of the list.

A command_sequence is a list of commands (a, c, r, w, or q) separated by commas that will be processed by a command point. If a command sequence is exhausted before the TPS ends, the TPS will start again at the beginning of the list.

3.2.1 Templates for the Standard Protocol TPSstc "3.2.1 Templates for the Standard Protocol TPSs" \l 4
3.2.1.1 Template for the Client's Standard Protocol Simulator (CST) tc "3.2.1.1 Template for the Client's Standard Protocol Simulator (CST) " \l 5
CST

{

#

#
comments may be put anywhere.

#

SEND
<file name>;

[CP1
<c>;]

[RECV
<time in seconds>;]

[CP2
<c>;]

}

Notes:

 (
<c> can be any of the valid commands for a command point. If the CP1 line isn't given, r (resume) will be assumed. If more than one command is given all but the first will be ignored.

 (
If RECV isn't specified, the TIMEOUT_LIMIT currently in effect will be used.

(
<File name> presumably contains a valid request, i.e., one for which a SST response can be expected.

3.2.1.2 Template for the server's standard protocol simulator (SST) tc "3.2.1.2 Template for the server's standard protocol simulator (SST) " \l 5
SST

{

[CP1
<c>;]

SEND
<file name>;

[CP2
<c>;]

}

Notes:

 (
<c> can be any of the valid commands for a command point. If the CP1 line isn't given, r (resume) will be assumed. If more than one command is given, all but the first will be ignored.

 (
<File name> presumably contains ODL for a standard response, such as PRODUCT_RESULT or DIRECTORY_RESULT. If the ODL is for a message known to belong in another protocol, a warning message will be issued.

3.2.2 Template for the Inventory Search TPSstc "3.2.2 Template for the Inventory Search TPSs" \l 4
3.2.2.1 Template for the Client's Inventory Search Protocol Simulator (CIS) tc "3.2.2.1 Template for the Client's Inventory Search Protocol Simulator (CIS) " \l 5
CIS

{

SEND
<file name>;

[CP1
<c1, c2, ...>;]

[RECV
<time in seconds>;]

[CP2
<c1, c2, ...>;]

[ACK
<file name>[, <file name>,...];]

}

Notes:

(
<File name> presumably contains ODL for INVENTORY_SEARCH; if not, a warning message will be issued.

(
If there is no specification for either of the two command points, an unending sequence of r commands will be assumed. If a command sequence is exhausted, it is started over at the beginning.

(
If RECV isn't specified, the TIMEOUT_LIMIT currently in effect will be used.

(
If ACK isn't specified, the ACK_FILE file will be sent. If the file sequence terminates before the transaction does, the sequence will be started again from the beginning.

3.2.2.2 Template for the Server's Inventory Search Protocol Simulator (SIS) tc "3.2.2.2 Template for the Server's Inventory Search Protocol Simulator (SIS) " \l 5
SIS

{

[CP1
<c1, c2, ...>;]

SEND
<file name> [, file name, ...];

[CP2
<c1, c2, ...>;]

[RECV
<time in seconds>;]

[QUIT
<file name>;]

}

Notes:

 (
 <File name>s should contain ODL for INVENTORY_RESULT, with each tree being a chunk. Normally these should be built according to the standing chunking rules of the IMS data dictionary, but the tester may choose to break the rules to validate robustness of a client to errant servers.

(
Unspecified command sequences default to r, r, ... If a command sequence is exhausted, it is started over at the beginning.

(
After SEND transmits the last file in its sequence, the decision point (Done?) will return true.

(
If RECV is not specified, the TIMEOUT_LIMIT currently in effect will be used.

 (
If QUIT is not specified the current QUIT_FILE file will be sent.

3.2.3 Template for the Integrated Browse TPSstc "3.2.3 Template for the Integrated Browse TPSs" \l 4
3.2.3.1 Template for the Client's Integrated Browse Simulator (CIB) tc "3.2.3.1 Template for the Client's Integrated Browse Simulator (CIB) " \l 5
CIB

{

SEND
<file name>;

[CP1
<c1, c2, ...>;]

[RECV1
<time in seconds>;]

[CP2
<c1, c2, ...>;]

[RECV2
<time in seconds>;]

[CP3
<c1, c2, ...>;]

[ACK
<file name>, ...;]

}

Notes:

 (
For the SEND function <file name> is presumably contains ODL for a BROWSE_REQUEST.

 (
Unspecified command sequences default to r, r, ... If a command sequence is exhausted, it is started over at the beginning.

 (
If RECV1 or RECV2 is not specified, the TIMEOUT_LIMIT currently in effect will be used.

 (
The ACK function is optional. If omitted, the file identified by ACK_FILE will be sent.

3.2.3.2 Template for the Server's Integrated Browse Simulator (SIB) tc "3.2.3.2 Template for the Server's Integrated Browse Simulator (SIB) " \l 5
SIB

{

[CP1
<c1, c2, ...>;]

SEND1
<file name>[, file name, ...];

[CP2
<c1, c2, ...>;]

SEND2
<file name>[, file name, ...];

[RECV
<time in seconds>;]

}

Notes:

(
 SEND1 defines a sequence of ODL files (presumably containing INTEGRATED_BROWSE_RESPONSE messages. SEND2 defines a sequence of browse files. The length of each binary file will be compared to the length specification in the ODL (IMAGE_SIZE) and warnings issued if they do not match.

(
Unspecified command sequences default to r, r, ... If a command sequence is exhausted, it is started over at the beginning.

(
If RECV is not specified, the TIMEOUT LIMIT currently in effect will be used.

(
If QUIT is not specified, the QUIT_FILE file will be used.

3.3 Configuration Files

Configuration files are like command files without command sets. They are used to set default values for the various control parameters. Settings from the configuration file can be overridden by a command file. The client simulator will attempt to read a file called v0clisim.cfg, and the server will attempt to read a file called v0svrsim.cfg.

3.3.1 The Client's Configuration File:
This is only an example.

Versions will vary from platform to platform.

This version is expecting the server to be on

dosxx. The port number has been chosen

arbitrarily, but is unlikely to be in use by

another server.

SERVER_PORT

6502;

SERVER_ADDRESS
192.150.28.42;

VERBOSE

ON;

RUNTIME_LIMIT

5400;

TIMEOUT_LIMIT

600;

QUIT_FILE

stdQUIT.odl;

TRACE

ON;

ACK_FILE

stdACK.odl;

ABORT_FILE

stdABORT.odl;

3.3.2 The Server's Configuration File:
This is only an example.

Versions will vary from platform to platform.

The port number has been chosen arbitrarily, but

is unlikely to be in use by another server.

SERVER_PORT

6502;

VERBOSE

ON;

RUNTIME_LIMIT
5400;

TIMEOUT_LIMIT
600;

QUIT_FILE

stdQUIT.odl;

TRACE

ON;

ABORT_FILE

stdABORT.odl;

MAP INVENTORY_SEARCH = inventory.cntl;

MAP DIRECTORY_SEARCH = directory.cntl;

MAP BROWSE_REQUEST = browse.cntl;

MAP PRODUCT_REQUEST = product.cntl;

MAP PRODUCT_CANCEL_REQUEST = cancel.cntl;

MAP PRODUCT_STATUS_REQUEST = status.cntl;

MAP PRODUCT_ESTIMATE_REQUEST = estimate.cntl;

4. Outputtc "4. Output" \l 2
All ODL messages received by either of the simulators will be written to stdout. Depending on the settings for the VERBOSE and TRACE options, additional information may be written to stdout, indicating the processor's state at the time of the message. All such additional material will be marked with a plus sign (+) in column 1, so that it will be easy to distinguish ODL from annotations and can easily be filtered out with a utility such as grep. An example output file is given in Section 4.1.

4.1 Annotated ODL Example: Verbose Client Simulator Output with Trace tc "4.1 Annotated ODL Example: Verbose Client Simulator Output with Trace " \l 3
Note that the right‑hand column of lower case letters are not part of the output file. They indicate which lines are controlled by the VERBOSE option (v) and which by the TRACE (t).

+ECHO

"Control File test1.cmd";
v

+START

02/19/97, 12:07:19

+SERVER_PORT

6502;

v

v

+SERVER_ADDRESS
192.150.28.42;

v

v

+VERBOSE

ON;

v

+TRACE

ON;

v

+RUNTIME_LIMIT
5400;

v
v

+TIMEOUT_LIMIT
600;

v

+QUIT_FILE

stdQUIT.odl;

v

+
‑‑‑‑‑‑‑‑‑‑

+TRANSACTION #1
CST

t

+SENT
pr.odl, 12:08:55

t

+CP1
r

t

+ODL RECEIVED PRODUCT_RESULT, 12:10:15
t

t

+CP2
r

t

+ODL FOLLOWS:

v

GROUP = PRODUCT_RESULT

 MESSAGE_ID = "M855850152"

 DATA_CENTER_ID = "JPL"

 STATUS_CODE = 1

 GROUP = DAAC_CONTACT_ADDRESS

 CONTACT_NAME = "USER SERVICES"

 ORGANIZATION = "JPL PHYSICAL OCEANOGRAPHY DAAC"

 ADDRESS = ("4800 OAK GROVE DRIVE, MS 300‑320")

 CITY = "PASADENA"

 STATE = "CA"

 ZIP = "91109"

 COUNTRY = "USA"

 PHONE = "(818) 354‑9890"

 FAX = "(818) 393‑2718"

 EMAIL = "PODAAC@PODAAC.JPL.NASA.GOV"

 DAAC_ORDER_ID = "31611"

 END_GROUP = DAAC_CONTACT_ADDRESS

 GROUP = MONITOR

 SESSION_ID =

"sprecher.gsfc.nasa.gov:20991:19970213:110115"

 TX_CLIENT = ("855850153", "506066")

 RX_SERVER = ("855850153", "723453")

 TX_SERVER = ("855850160", "755335")

 RX_CLIENT = ("855850161", "263053")

 END_GROUP = MONITOR

 GROUP = VERSION

 CLIENT_VERSION = "V0_SERVER_951207"

 PROTOCOL_VERSION = 3.2

 END_GROUP = VERSION

END_GROUP = PRODUCT_RESULT

END

+END ODL

v

+CONNECTION CLOSED
12:11:02

t

t

+END TRANSACTION #1

t

t

+ ‑‑‑‑‑‑‑‑‑‑

+ END TEST
Command File test1.cmd

t

t

4.2 Images (client only)tc "4.2 Images (client only)" \l 3
An image file received by the client's integrated browse protocol simulator (CIB) under the V0 protocol is saved in output file v0cib.1.image. Images received under the V0' (ASTER) protocol are saved in a sequence of output files: v0cib.1.image, v0cib.2.image, and so on in the order they are received.

4.3 Error logtc "4.3 Error log" \l 3
All error messages are written to stderr and will be marked as either a warning or a fatal error. Processing will continue after warnings, but will terminate after a fatal error. All error messages will start with a minus sign (‑) in the first column, so that they will be easy to distinguish from other types of messages should stdout and stderr be combined.

4.3.1 Warning Messagestc "4.3.1 Warning Messages" \l 4
A partial listing of warning messages follows.

‑simulator: warning ‑ no configuration file found.

‑simulator: warning ‑ no RUNTIME_LIMIT set. Assuming unlimited.

‑simulator: warning ‑ no TIMEOUT_LIMIT set. Assuming 600 seconds.

‑simulator: warning ‑ unknown request from client: <ODL group name> | “BAD ODL”

‑simulator: warning ‑ CST sending INVENTORY_SEARCH, should use CIS

‑simulator: warning ‑ CIB sending <ODL group name>, should use CST

‑simulator: warning ‑ <TPS> sending bad odl etc.

4.3.2 Fatal Errorstc "4.3.2 Fatal Errors" \l 4
‑simulator: fatal ‑ no SERVER PORT.

‑simulator: fatal ‑ no SERVER ADDRESS. (Client only)

‑simulator: fatal ‑ file not found. (If a file has been specified but can't be opened.)

‑simulator: fatal ‑ no QUIT ODL.

‑simulator: fatal ‑ no ACK ODL.

‑simulator: fatal ‑ bad syntax: <bad line>

Appendix A—Glossarytc "Appendix A—Glossary" \l 2
Object Description Language—a data description language used by the V0 IMS to construct messages and convey information between clients and servers.

ODL—Object Description Language

port—16‑bit integer identifying which process at a particular IP address is sending or receiving information. The client will have an ephemeral port number that will only be associated with the client process when it is connected to a server. The server will have to have a particular port assigned to it, so that the client can know how to reach it. [Stevens pg. 303]

TPS—transaction protocol simulator

transaction—a complete interaction between a client and a server, starting with the client establishing a connection with the server and ending with both the client and the server closing their respective connections.

transaction protocol—the set of steps gone through by a client and a server to accomplish a particular transaction.

Appendix B—Referencestc "Appendix B—References" \l 2
Davis, Randy; User's Guide for the Object Description Language Processing Software Library; National Aeronautics and Space Administration Planetary Data System; March 1991.

Hughes STX; EOSDIS Information Management system: Messages and Development Data Dictionary (V) and Release A Message Passing Protocol Specification); June 1996.

Switalski, Len; Interface Control Document Between EOSDIS Core System (ECS) and ASTER Ground Data System (document number 209‑CD‑002‑005); Systems Management Office; January 1997.

Stevens, Richard W.; UNIX Network Programming; Prentice‑Hall, Inc.; 1990.

Appendix C—Control File Syntax

tc "Appendix C—Control File Syntax" \l 2
The following BNF gives a formal definition of control files. Specific files are restrictions of this syntax: config files and the server stdin file cannot contain command sets, server control files cannot contain command sets for client protocols and vice versa.

ctrl_file
(
ctrl_file ctrl | ctrl
ctrl

(
parmset | cmdset

parmset
(
RUNTIME_LIMIT float ';'

|

SERVER_ADDRESS ip_addr ';'

|

SERVER_PORT integer ';'

|

ACK_FILE filename ';'

|

QUIT_FILE filename ';'

|

ABORT_FILE filename ';'

|

ECHO string ';'

|

TIMEOUT_LIMIT float ';'

|

TRACE (ON | OFF) ';'

|

VERBOSE (ON | OFF) ';'

|

MAP id '=' filename ';'

cmdset

(
CST '{' cstlist '}'

|

SST '{' sstlist '}'

|

CIS '{' cislist '}'

|
SIS '{' sislist '}'

|

CIB '{' ciblist '}'

|

SIB '{' siblist '}'
cstlist

(
cstlist cst | cst

cst

(
send | cp1 | recv

sstlist

(
sstlist sst | sst

sst

(
cp1 | cp2 | send

cislist

(
cislist cis | cis

cis

(
cp1 | cp2 | send | recv | ack

sislist

(
sislist sis | sis

sis

(
send | cp1 | cp2 | recv | quit

ciblist

(
ciblist cib | cib

cib

(
send | cp1 | recv | cp2 | recv2 | cp3

siblist

(
siblist sib | sib

sib

(
cp1 | send | cp2 | send2 | recv
send

(
(SEND | SEND1) filelist ';'

send2

(
SEND2 filelist ';'

cp1

(
(CP | CP1) cparglist ';'

cp2

(
CP2 cparglist ';'

cp3

(
CP3 cparglist ';'

recv1

(
(RECV | RECV1) floatlist ';'

recv2

(
RECV2 floatlist ';'

ack

(
ACK filelist ';'

quit

(
QUIT filelist ';'

filelist

(
filelist ',' filename | filename

floatlist

(
floatlist ',' float | float

cparglist

(
cparglist ',' cparg | cparg
cparg

(
r | w '(' float ')' | a | q | c

Appendix D—Chunking Rulestc "Appendix D—Chunking Rules" \l 2
When the Inventory Results generated from a user query are large, an Inventory Results message can be broken up into “chunks” according to a set of rules. Chunking helps breakup large Inventory Results into smaller but complete trees. The chunks are composed of basic types of information; Inventory Result Prefix, Dataset group, and Granule Group. Package Information can be integrated into the tree according to three options:

Option 1. - Adding All Package Groups in front of the First Dataset Group

Option 2. - Adding Relevant Package Groups in front of each Dataset Group

Option 3. - Adding Relevant Package Groups in each Dataset Group

The following example illustrates the structure, guidelines, and options for placing Package Information for chunking:

INVENTORY RESULT PREFIX:

Info: (Message_Id, Data_Center, Status_Code, Status_Code_Comment, Unmapped_Field)

Rule: (Required for each chunk)

Option 1 for Package Information (0 or more per chunk)

Option 2 for Package Information (0 or more per chunk)

DATASET GROUP

Info: (Metadata within the Dataset group)

Rule: (0 or more per chunk; avoid repeating in other chunks)

Option 3 for Package Information (0 or more per chunk)

GRANULE GROUP

Info: (Metadata within the Granule group)

Rule: (0 or more per chunk)

The following combinations of information are possible for chunks:

a.
Inv Result Prefix + Package Information

b.
Inv Result Prefix + Package Information + Dataset metadata

c.
Inv Result Prefix + Dataset metadata + Granules

d.
Inv Result Prefix + Dataset metadata + Package Information + Granules

Chunking can specify the total number of granules returned in an Inventory Results message. The size of each chunk need not be uniform in size although a past guideline constraint for a granule-per-chunk cap of 51, yielding a chunk size of about 64 kilobytes, is useful but not mandatory.

RULES and GUIDELINES

Size of each chunk need not be uniform but should be moderate in size (64 kilobytes).

The size of the package information for granules in a particular Inventory Results message can be either consolidated in the first chunk (Option 1 if it fits within the chunk size cap) or distributed in other chunks according to Options 2 and 3.

Avoid repeating the Dataset metadata and package information once provided in an appropriate chunk.

Granules are added to a dataset group until the granules per chunk limit is reached. Remaining granules can be put into the next chunk(s).

Use the NUMBER_OF_GRANULE_HITS field to store the total granule count for the result message following the last granule of each dataset in the sequence.

An Inventory Result chunk can have several dataset groups or granules from dataset can be spread across several Inventory Result chunks.

Do not break ODL trees across groups (any chunk is a complete tree).

Chunks come in a sequence.

Each Result message is expected to have the Message_ID and Monitor group added.

Dataset metadata is included only before the first granule.

A chunk can contain more than one dataset and their granules.

Appendix E—Typical Teststc "Appendix E—Typical Tests" \l 2
The following tests show some typical test that might be run to verify a client or server. The values in brackets are STATUS_CODE values returned.

E.1 Server Simulator Tests Against a Clienttc "E.1 Server Simulator Tests Against a Client" \l 3
Normal tests
Directory search, standard result

Inventory search (all followed by QUIT [1])

Chunk variations: one, two, three

Packaging placement variations: option one, two, three

Packaging content variations: * only, non‑* only, mixed

Dataset variations: one, two

Granule variations: one, two

Miscellaneous variations in media, processing options, accounting, additional info prompt, restricted data

Browse request, ftp, standard result

Browse request, integrated

Single file result, uncompressed

Single file result, compressed

Multiple file result (Aster)

Product request (order)

Normal ASTER Tests
Price estimate, standard result

Product status, standard result

Product cancel, standard result

Abnormal Tests

Timeout with no response

Immediate disconnect

Directory search

No match [2]

Data for selected source not archived at DAAC [3]

Data for selected sensor not archived at DAAC [4]

Dataset not archived at DAAC [5]

Data for selected parameter not archived at DAAC [6]

Data for selected sourc, sensor, parameter, and/or dataset not archived at DAAC [7]

Pertinent inventory system unavailable, try later [8]

Requested function not supported by this DAAC [10]

System error, please try again later [11]

No data for selected campaign [13]

System error, contact user support [19]

Data not found due to spatial and/or temporal limitations [20]

Invetory request

QUIT [1] with no data

No match [2]

Data for selected source not archived at DAAC [3]

Data for selected sensor not archived at DAAC [4]

Dataset not archived at DAAC [5]

Data for selected parameter not archived at DAAC [6]

Data for selected source, sensor, parameter, and/or dataset not archived at DAAC [7]

Pertinent inventory system unavailable, try later [8]

Requested function not supported by this DAAC [10]

System error, please try again later [11]

Search too broad [12]

No data for selected campaign [13]

Browse granules only selected, but no granules having browse match [14]

Global granules only selected, but no granules having global coverage match [15]

No data for requested processing level [14]

System error, contact user support [19]

Data not found due to spatial and/or temporal limitations [20]

Partial transmission (one or more chuncks), then disconnect without QUIT [1]

Partial transmission, then timeout

Browse request, ftp

No match [2]

Pertinent inventory system unavailable, try later [8]

Requested function not supported by this DAAC [10]

System error, please try again later [11]

System error, contact user support [19]

Browse request, integrated

No match [2]

Pertinent inventory system unavailable, try later [8]

Requested function not supported by this DAAC [10]

System error, please try again later [11]

System error, contact user support [19]

Header, partial file, disconnect

Header, partial file, timeout

Header, partial file, system error [11 or 19]

Header indicating more (LAST_FILE=0), full file, disconnect

Product request

Requested function not supported by this DAAC [10]

System error, please try again later [11]

System error, contact user support [19]

Abnormal ASTER Tests
Price estimate

System error, please try again later [11]

System error, contact user support [19]

Product status, standard result

System error, please try again later [11]

System error, contact user support [19]

Product cancel, standard result

System error, please try again later [11]

System error, contact user support [19]

E.2 Client Simulator Tests Against a Server
Normal Tests
Inventory search, accepting all chunks

Browse request, integrated, accepting all headers and files

All other requests, accepting results

Abnormal Tests
Arbitrary request immediately followed by disconnect

Inventory search

Disconnect following some chunk after ack

Disconnect following some chunk before ack

Timeout following some chunk before ack

Abort (both before and after ack)

Browse request, integrated

Disconnect during file reception

Abort during file reception

